Permanent Fault Repair in FPGAs through Graceful Degradation

Introduction

- Permanent fault recovery
 - Removing damaged elements
 - Repairing damaged elements

Permanent Fault Repair

- Module repair
 - Hybrid redundancy
 - Self-purging redundancy
 - TMR/Simplex
- Fine-grained repair
 - FPGA
 - Reconfiguration
 - Replacing damaged elements by unused fault-free elements

Error Recovery Flow in FPGAs

Permanent Fault Repair in FPGAs

- Problem addressed
 - Exhaustion of fault-free elements
 - High FPGA utilization
 - Long mission time

Catherine Shu-Yi Yu
Stanford University
April 16, 2001
Permanent Fault Repair in FPGAs through Graceful Degradation

Permanent Fault Repair in FPGAs
- Solution
 - Module removal
 - Availability degradation
 - Waste of resource

Configuration Selection
- Given
 - Original simplex design
 - Available FPGA area
- Find
 - Configuration
 - Availability

Design Candidates
- Starting from TMR
 - Hybrid TMR-Simplex-CED
 - Duplex with two CEDs
 - Duplex with a checker
- Designs adjusted with available FPGA area
 - Graceful degradation
 - Availability

Hybrid TMR-Simplex-CED
- Original
- Degraded
Permanent Fault Repair in FPGAs through Graceful Degradation

Hybrid TMR-Simplex-CED
- Partition of TMR and Simplex-CED
 - Available FPGA area
 - Design constraints
- Recovery
 - TMR
 - Roll-forward
 - Simplex-CED
 - Rollback

Duplex with Two CEDs
- Proportion with CED
 - Available FPGA area
 - Design constraints
- Recovery
 - Mismatch
 - Detection in one CED
 - Roll-forward
 - Detection in none or both CED
 - Rollback

Duplex with a Checker
- Checker area
 - Available FPGA area
 - Design constraints
- Recovery
 - Mismatch
 - Different with the checker
 - Roll-forward
 - Same with the checker
 - Rollback

Evaluation Metrics
- Rollback rate
 - Percentage of time in re-computation
 - Indication of availability
 - Important for deadline-critical applications
 - Calculation
 - \(\text{Prob(rollback)} \)
Evaluation Metrics

- Data Integrity
 - Correct outputs or error indication
 - Normal function
 - Recovery
 - Repair
 - Calculation
 - Plot vs. time

Evaluation Metrics Computation

- CED
 - Coverage
 - Duplex: single block fault detection
 - General CED: single fault detection
 - Overhead
 - Duplex: 100%
 - General: 90% [Mitra 00]
 - Arithmetic: 30% [Sparenmann 96]

Evaluation Metrics Computation

- Permanent error rate
 - < Transient error rate [Ohlsson 98]
 - > Multiple transient error rate
 - ≤ Multiple transient error rate
 - Need other techniques
- Compared to module removal
 - TMR => Duplex

Rollback Rate

- CED duplex

Rollback Rate

- CED 90% overhead
Rollback Rate
- CED 30% overhead

Data Integrity
- CED duplex, total area = 2.75×module area

Data Integrity
- CED 90%, total area = 2.75×module area

Data Integrity
- CED duplex, total area = 2.25×module area

Data Integrity
- CED 90%, total area = 2.25×module area

Improvement
- Depending on CED overhead
 - High overhead
 - Hybrid TMR-Simplex-CED
 - Low overhead
 - 3×module area Duplex with two CEDs
 - < 3×module area: hybrid TMR-Simplex-CED
Permanent Fault Repair in FPGAs through Graceful Degradation

Data Integrity

- CED 30%, total area = 2.75xmodule area

![Graph showing data integrity over time for different redundancy schemes.

Conclusion

- Flexibility of FPGA
 - Permanent error repair
 - Graceful degradation
 - Rollback rate
 - Compared with module removal
 - Improved

- Configuration selection
 - High CED overhead
 - Real-time: hybrid TMR-Simplex-CED
 - Non-real-time: 3 x module area: TMR => Duplex
 - Low CED overhead
 - 3 x module area Duplex with two CEDs
 - < 3 x module area: hybrid TMR-Simplex-CED
Permanent Fault Repair in FPGAs through Graceful Degradation

References