Partial Reconfiguration of FPGA

Robert Wei-Je Huang
RATS / EE385A
Stanford University
May 17, 1999

Outline
- Overview of FPGA Architecture
- Reconfiguration Issues
- Partial Reconfiguration Algorithms
- Summery
- Reference

FPGA Architecture
- Configurable Logic Blocks (CLB)
 - Look-Up Table (LUT)
 - MUX
 - D Flip-Flop
- Interconnection
 - Connection Box (CB)
 - Switch Box (SB)
- I/O Block (IOB)

Reconfiguration Issues
- Performance aspect
 - Dynamic run-time reconfiguration
- Fault tolerance aspect
 - Affinity matching method [Mathur et. al. 95]
 - Node-covering method [Hanchek and Dutt 96]
 - Partial reconfiguration and incremental routing [Bhatia 98]

Partial Reconfiguration
- Problem Formulation
- Assumptions
 - Fault diagnosis available
 - CLB fault only
 - Sufficient empty CLB for reconfiguration
- Algorithms
 - Minimax Grid Matching
 - Move-by-shifting Strategy
 - Incremental Routing
Partial Reconfiguration of FPGA

Minimax Grid Matching
- Bipartite matching problem
- Minimize the max. distance of the matched pair
- Upper bound for the matching length $O(\log^{1/4}N)$ in random distribution [Leighton and Shor 86]
- Iterative greedy algorithm
 - Initially set $L=1$
 - Adding matched pairs if distance < L available
 - If not, increment L and restart again
 - Worst-case L needs $O(N^{1/2})$ iterations

Functionality Transplantation
- Problems with direct swapping

Incremental Routing
- Rip up logic block nets and interconnect nets
- Trace the original netlist to find the endpoints

Functionality Transplantation
- Move-by-shifting strategy

Incremental Routing
- Locally reroute the ripped nets to the new CLBs
- Set a small window size for routing
- Increment the window if no routing resource available at each iteration
- Select the optimal rerouting path
 - Cost function: $c(s) = \alpha \cdot BB(s) + \beta \cdot CGC(s) + \gamma \cdot SU(s) + \delta \cdot PC(s)$
 - BB: bounding-box function
 - CGC: channel group capacity
 - SU: segment utilization
 - PC: pin capacity
Partial Reconfiguration of FPGA

Issues and Potential Solutions

- **Complexity**
 - Max. $O(N^{1/2})$ rounds for minimax grid matching
 - Max. $O(F_{c} F_{s}^{2W_{s}})$ for each incremental routing
- **Spare CLBs during initial compilation**
- **Routability**
 - Xilinx Virtex: direct paths between adjacent CLBs, buffered lines to SBs 6-block away
- **Pre-Compilation approach**

Summary

- **Partial Reconfiguration**
 - Minimax Grid Matching
 - Move-by-shifting Strategy
 - Incremental Routing
 - Pre-Compilation Approach

Reference