The Flat Earth & Single-stuck Fault Theories
Edward J. McCluskey
Chao-Wen Tseng
Center for Reliable Computing (CRC)
Computer Systems Laboratory
Departments of Electrical Engineering and Computer Science
Stanford University
http://crc.stanford.edu/

The Murphy Experiment
Edward J. McCluskey
Chao-Wen Tseng
Center for Reliable Computing (CRC)
Computer Systems Laboratory
Departments of Electrical Engineering and Computer Science
Stanford University
http://crc.stanford.edu/

The Murphy Experiment
- Sponsors
 - Hughes Aircraft and LSI Logic
- Collaborators
 - Advantest, DTS, Pycon and Credence

Objectives
- Evaluate Production Test Techniques
 - Identify Techniques
 - Minimum Test Cost
 - Maximum Product Quality and Reliability
 - Compare
 - Fault Models and
 - Production Defects

The Murphy Chip
- LSI Logic 150k CMOS Gate Array
 - (with Crosscheck™ embedded array)
- 25,000 Gate Design
- 120 pin Ceramic PGA Package
- 96 Signal Pins
- L eff = 0.7 mm
- 5 volt nominal supply voltage

The Murphy Chip
- Special Purpose Chip Design
 - Support (DFT) Circuitry
 - 5 different Combinational circuit designs
 - (Circuits Under Test or CUTs)
 - 3 control logic designs
 - 2 data path designs
 - 4 copies of each CUT
The Murphy Experiment

Wafer Sort

- 30 test sets applied
- 5,491 dies evaluated
- 309 dies packaged

The Murphy Experiment

Package Die Selection

- 116 Dies with “functional” Failures
- 20 Dies with VLV Failures Only
- 1 Die with Only IDDQ Failure
- 166 Good Dies
 - 309 ICs Overall

The Murphy Experiment

Package Test

- Tester
 - Advantest T6671E VLSI Test System
 - 125MHz clock rate
- Test Time: 10 minutes per die on average
 - 5 minutes per good die
 - 20 minutes per interesting die
 - 10 minutes average

- Total Number of Test Patterns Applied
 - 1.4 Million plus 2^{24} Exhaustive Patterns
- Test conditions
 - 3 Supply Voltages
 - 1.7V, 2.5V, 5V
 - 4 Test Speeds
 - “rated” from Shmoo plot
 - 2/3 rated
 - Less than 1/3 rated
 - Faster than rated — 15% or 5% faster

- 265 test sets applied
 - 162 single stuck fault based
 - 60 delay fault
 - 10 weighted random
 - 2 verification vectors
 - 30 IDDQ
 - 1 exhaustive

- All 30 Test Sets Used in the Wafer Probe
- More Multiple-detect SSF Test Sets
 - 1, 2, 3, 4, 5, 7, 10, 12, 15-detect
- Test Sets Modified from Original Test Sets
 - Preceded by all-zero, all-one, bitwise complemented vectors
 - Reverse sequence
The Murphy Experiment

Package Test

• IDDQ Measurements
 ◆ Wait time: 1ms
 ◆ Adaptive Resolution: 2nA — 200nA
 ◆ Measured at 5.25V, 2.5V, and 1.7V
 ◆ 6 different test sets
 ■ 5 based on pseudo-stuck model
 ■ 1 pseudo-random

Reminder

• Very Thorough Manufacturing Test
• Defects
 ◆ Normal Production Defects
 ◆ No artificially inserted defects

Testing Issues

• Boolean Test Effectiveness
 ◆ aka functional test, scan test, stuck-fault test
• Timing Tests
 ◆ At-speed (functional) or Transition (2 pattern)
• Reliability Tests
 ◆ IDDQ, VLV, SHOVE, Burn in
• Disclaimer
 ◆ Murphy chip results only

Stuck-fault Test Questions

Are stuck-fault tests effective?
Is 100% single-stuck coverage enough?
What’s better?
Is the stuck-fault model accurate?
Does the test vector order matter?

Production Test Questions

Are there timing defects?
What’s the best test for timing defects?
Can burn-in be avoided?
How many IDDQ vectors are enough?
How good are IDDQ test pattern sets?
How about VLV?
 ◆ Very Low Voltage
How about SHOVE?
 ◆ SHOrt Voltage Elevation
The Murphy Experiment

Conclusions
- The conventional wisdom
- Is often wrong

Future Research

- Alternatives to AT-SPEED testing
- Alternatives to Burn In
- New IDD Techniques
- Very Low Voltage Techniques
- New approaches to SHOVE testing
- BIST Techniques
- Fault models & fault grading capability

CRC Research Activities

TOPS Project - completed
- Totally-optimized Synthesis
- High-level Synthesis System Using VHDL
- Optimizes Design for Specified Test Features
- BIST, Scan
- Inserts Embedded Checkers for Concurrent Test
- Share Functional and Test or Checker logic

ROAR Project
- Reliability Obtained by Adaptive Reconfiguration
- Use FPGAs for fault-tolerant reconfiguration

ARGOS Project
- Use ARGOS satellite to collect error data
- Compare Rad Hard and COTS boards
- Software Implemented Fault Tolerance Techniques

CRC Research Activities

ELF Project
1. Elusive Failures
2. Early-life Failures
- Theoretical Research
- VLV Test - Very-Low-Voltage Test
- SHOVE Test - SHOrt Voltage Elevation Test
- Experimental Research - Compare Test Techniques
 - Murphy Test Chip Experiment
 - LSI Logic 0.7µm Gate Array Chip, Combinational Circuits
 - ELF 1 Test Chip Experiment
 - LSI G10-P 0.35µm Cell-based Chip
 - Combinational, 2901 processors
 - ELF 2 Test Chip Experiment
 - LSI G10-P 0.35µm Cell-based Chip
 - Mixed-signal DAC Cores

Support: DARPA, NSF, LSI, IBM, HP, CIS
Cooperation: ADVANCE, AMBIT, INTEL, PYCON

http://crc.stanford.edu
