Low Power Fault Tolerance

Outline

- Introduction
- Motivations
- Problems
- Current Solutions
- Summary

Introduction

- Fault Tolerance
 - Correct execution in presence of fault
- Fault Avoidance
- Error Detection
- Error Recovery
 - Reconfigure
- Need for Redundancy
 - More power consumption

Questions

- What Type of Fault?
 - Transient
 - Re-execution
 - Permanent
 - Structural (physical) redundancy
- Required
 - Recovery time
 - Reliability
- Power Budget

Motivations

- Space Applications
 - NASA Remote Exploration and Experimentation (REE) project [1]
 - Cheaper spacecrafts
 - Smaller, lower power budget
 - Commercial electronic components
 - Autonomous navigation and on-board data processing
- Commercial Satellites
- Ubiquitous Portable Computing

Example 1: Mars Pathfinder

- Commercial VME Bus (no redundancy)
- Lander:
 - Flight computer: rad-hard RISC 6000
 - COTS DRAM (3D stack), Actel FPGAs, COTS EEPROM, VxWorks
- Rover: [2]
 - 80C85
 - Very limited power budget
Low Power Fault Tolerance

Example 2: Cassini Spacecraft
- 10.7 year Mission to Saturn [3], [4]
- Dual Redundant Architecture
 - Modules and bus
 - 1750A microprocessor
- Contact Once per Week
- Autonomous Fault Tolerance
 - Fail safe
 - Fail operational
 - Time-critical activities
 - Checkpoints

Problems (1)
- Low-Voltage Technologies [5]
 - Reduced noise margin
 - Early total dose failure
 - Reduced radiation tolerance
 - Long-term reliability

Problems (2)
- Sub-micron Feature Sizes [6]
 - Reduce voltage to avoid hot carrier reliability issue
 - Comparable in size to the diameter of the ion track
 - Microdose (localized dose) damage
 - Microscopic ionization
 - Subthreshold leakage

Problems (3)
- Rad-Hardening of Commercial Lines Expensive
- COTS with FT for SEU
 - May not be effective for high total dose
- Rad-Hard Multiproject Wafers
- UTMC and AMI
 - 32KB rad-hard PROM (anti-fuse based)
 - 500Krad, 40ns, low power, $3300
 - "Commercial rad-hard" components

Power in CMOS
- Power: \(P = P_s + P_d + P_{sc} \)
- Dynamic Power: \(P_d = C V^2 f a \)
 - Lower:
 - \(C \): switching capacitive load
 - \(V \): supply voltage
 - \(f \): switching frequency
 - \(a \): activity
- Performance Hit
 - Use higher parallelism

Power Reduction
- Approaches
 - Processes and materials
 - Microelectronics packaging
 - Circuit design
 - Architecture design
- Other Driving Forces
 - Cost of packaging and cooling
 - Reliability aspects
Low Power Fault Tolerance

Processes and Materials
- Low-Threshold Material (SOI)
- Less Leakage Current
- Ultra Low Power Group at Stanford [7]
 - Tunable low threshold CMOS process
 - 125-500mV supply voltage

Microelectronics Packaging
- 3D MCM Stacks
- Higher Redundancy at Function Level
- No Moving of Data off and on the Chip
- Wafer Scale Integration [8]
 - Low power, high speed, small volume
 - Low yield: redundancy, reconfiguration

Circuit Approaches
- Static Circuits
- Operate at a Range of Frequencies
 - Programmable clock rate
- Optimum Transistor Sizing in Tree Checkers [9]
- Self-Checking Circuits [10]
- Adiabatic Switching
 - Charge storage/recovery circuits [11]
- Lower Internal Voltage

Architectural Approaches (1)
- Power-On/Clock Only Active Modules
 - StrongARM, ARM 810
- Stand-By, Sleep Mode
 - Ultra low-power 486SX/GX
 - Power management
- Cold Spare vs. Hot Standby
 - Powered down spares subject to less total ionizing dose degradation
- Fuse Blower Chip to Isolate Faulty Module [12]

Architectural Approaches (2)
- Several Smaller Processing Elements with Spares [13]
- Built-in-Self-Repair Techniques
 - Yield enhancement
- Residue Codes for Arithmetic Units
- Adaptability
 - Trade off performance for fault-tolerance
- Graceful Degradation

Configurable Spare Processors
- Configurable Data Path [14]
 - One can do the job of any failing data path
- Synthesis Tools
 - Bundles of compatible applications
 - Configurable spare for each bundle
 - Each application in k bundles
- Area 71% of Dedicated Spare
Low Power Fault Tolerance

FT State Machines
- Correct Single Flip-Flop Errors [15]
 - TMR
 - Duplex
 - Different ECC approaches
 - TMR only in Flip-Flops
- Best area and performance
- M-of-N Codes
- Minimize Switching [16]
 - Number of bits changed per cycle

Temporal Redundancy
- Error Detection
 - Multiple execution of instructions
 - High latency
 - Affine transformations
- Error Recovery
 - Process pairs
- Important Jobs Duplicated
- Hybrid of Structural and Temporal Redundancy

Summary
- Critical Tasks
 - Structural redundancy
- Benefits from Low Power Technology
- ECC and Spare Column for Memory
- Self-Checking Circuits
- Residue Code for Data Path
- Configurable Spares
- Power Management
- Software Error Detection

References (1)
- Shaw, D.C., G.M. Swift and A.H. Johnston

References (2)
[7] Ultra Low Power group at Stanford:
 - [http://www-star.stanford.edu/projects/upul/upul.html]

References (3)

References (4)

Philipp Shirvani - RATS Page 4 7/28/97