Using Test Results from a Sample of Chips to Reorder and Truncate Patterns

Outline
- Introduction
 - Pattern Choice and Order Problem
- Previous Engineers’ Solutions
 - Few Patterns Detect Defective Chips
- Our Contribution: Quantification
 - Few Patterns Detect Defective Chips
 - Defect Level Impact of Truncation
- Conclusion

Integrated Circuit Testing

<table>
<thead>
<tr>
<th>Inputs</th>
<th>CUT Outputs</th>
<th>Expected Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>010</td>
<td>01</td>
<td>11*</td>
</tr>
<tr>
<td>101</td>
<td>01</td>
<td>01</td>
</tr>
<tr>
<td>111</td>
<td>11</td>
<td>10*</td>
</tr>
</tbody>
</table>

Choice of Patterns to Apply
- Test Patterns Data
 - Storage in Tester Memory
- Limited Tester Memory
 - [Benware 03] [Maxwell 02] [Madge 04]
- Limited Number of Patterns on Tester
- Choice of Which Patterns to Apply
 - Defect Level Impact?

Stop on First Fail

<table>
<thead>
<tr>
<th>Inputs</th>
<th>CUT Outputs</th>
<th>Expected Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>010</td>
<td>01</td>
<td>11*</td>
</tr>
<tr>
<td>101</td>
<td>01</td>
<td>01</td>
</tr>
<tr>
<td>111</td>
<td>11</td>
<td>10*</td>
</tr>
</tbody>
</table>

Choice of Order of Patterns
- Stop Testing after First Failing Pattern
 - Test Time Savings
- Reordering
 - Change in Test Time [Madge 04]
- Choice of Order of Patterns
 - And Truncation
Solution: [Maly 86]

- **Know**
 - Probability of Occurrence of Each Defect
 - Which patterns detect each defect
- **Pattern Order Criteria:**
 - Probability of detecting a defect
- **Optimum Order**
 - Minimum Testing Time
 - Minimum DPM Increase if Truncation

Problems with [Maly 86]

- **Do not Know**
 - Probability of Occurrence of Each Defect
 - Which patterns detect each defect
- **Solutions:**
 - Use of Test Metrics for Reordering
 - [Chao 04] [Cho 06] [Lin 01] [Tian 05]
 - Use of Test Results for Truncation
 - [Madge 04] [Guo 06] [Maxwell 02] [Benware 03]

Outline

- **Introduction**
 - Pattern Choice and Order Problem
 - Previous Engineers’ Solutions
 - Few Patterns Detect Defective Chips
- **Our Contribution: Quantification**
 - Few Patterns Detect Defective Chips
 - Defect Level Impact of Truncation
- **Conclusion**

First Patterns Detect Most chips

- [Guo 06] [Nigh 00] [Madge 04]
 - Power Curve
 - First Patterns
 - Detection of Most of Defective Chips
 - Example: 10%-90%

Few Patterns Detect Chips

- [Madge 04]: Test of 25 Wafers
 - 4% of Patterns Detect Chips
- [Guo 06]: Test of 500,000 Chips
 - 30% of Patterns Detect Chips
- [Nigh 00]: Test of 20,000 Chips
 - 11% of Patterns Detect Chips
Pattern Choice and Ordering

- Solution to Pattern Choice and Ordering
 - First Patterns Detect Most Defective Chips
 - Few Patterns Detect Defective Chips
- Problem:
 - Patterns Detecting Defective Chips
 - Prediction Hard

Evidence

- Experiments in [Madge 04]
 - Set of Patterns detecting Defective Chips
 - Different at Every Experiment
- Conclusion in [Guo 06]
 - "No Test Metric can Predict which Patterns will detect defective chips"

[Madge 04]

- First Experiment:
 - 6,000 patterns
 - 25 Wafers of Chips
 - Only 4% of patterns detect defective chips
- Second Experiment:
 - Same 6,000 Patterns, next 25 Wafers
 - Different 4% of patterns detect defective chips

[Guo 06]

- 7,400 patterns Test Set
- 500,000 Chips Tested
- Test Metrics to Test Results Comparison
 - Only 30% of the patterns detect defective chips
 - Conclusion: "No Test Metric can predict which patterns detect defective chips"

Test Time Gain by Prediction

- [Madge 04]
 - If Patterns Ordered Perfectly
 - Reduce 2-40x Defective Chips Test Time

Outline

- Introduction
 - Pattern Choice and Order Problem
- Previous Engineers’ Solutions
 - Few Patterns Detect Defective Chips
- Our Contribution: Quantification
 - Few Patterns Detect Defective Chips
 - Defect Level Impact of Truncation
- Conclusion
Few Patterns Detect Chips

- Expected Number of Useful Patterns
 - Defect Coverage of Patterns 1 through k \(C_D(k) \)
 - Number of Patterns \(N \)
 - Number of Chips Tested \(M \)
 - Yield \(Y \)

\[
N - \sum_{k=1}^{N} (1 - C_D(k - 1) + C_D(k))^M (1 - Y)
\]

Derivation

- Defective Chips Passing Patterns 1 to n
 \[1 - C_D(n - 1) \]
- Defective Chips Passing Patterns 1 to n
 \[1 - C_D(n) \]
- \(P(\text{1 Chip Not Detected by } n) = C_D(n - 1) + (1 - C_D(n)) \)
- \(P(\text{No Chip Detected by } n) = (C_D(n - 1) + (1 - C_D(n)))^{Y(n - 1)} \)

Experiment Results

- IBM Experiment
- 10,000 Patterns Test Set
 - 1,000,000 Chips Tested
 - 3,000 Useful Patterns
 - 20,000,000 Chips Tested
 - 5,000 Useful Patterns

IBM Experiment Example

- Defective Chips Detected vs Patterns Applied
- The First 1,000 Patterns (10%) Detect 40,000 Defective Chips (50%)
- The Remaining 9,000 Patterns have only 5,000 Chips Left to Detect
- Conclusion: Not Enough Defective Chips Tested for All the Patterns to Fail

Conclusion

- Not Test Enough Defective Chips
 - For all patterns to fail
 - To predict whether a pattern will fail
 - Truncation?

Defect Level Increase

- Truncate Test Set
 - Less Thorough Test Set
- What Defect Level increase?
 - [Williams 81] [McCluskey 88b]
 - Too Conservative Estimate?
 - Loss of few useful patterns
 - Not all defects will occur
Defect Level Increase Calculation

- Assumption: All Defects Occur
- Wadsack [Wadsack 78]
 - Defect Coverage = Fault Coverage
- Williams-Brown [Williams 81]
 - Defect = Independent and Equiprobable SSF
- JSSC [Agrawal 82], CAD [Das 90], SPR [Seth 89]
 - Dependent Defects, Clustering

Williams-Brown

- Williams-Brown [Williams 81]
 - Defect Level = f(Yield, Coverage)

\[
\text{Defect Level} = 1 - \text{Yield}^{(1 - \text{Coverage})}
\]

[McCluskey 88b]

Estimates Too Conservative?

- 10,000 patterns: 99.5% SSF Coverage
 - 1,000,000 Chips Tested, 50,000 Detected
 - 3,000 Useful Patterns
- Truncate: 3,000 Patterns: 97% Coverage
 - [McCluskey 88b]: 256 DPM to 1,500 DPM
 - Statistics: Loose 7,000 Patterns
 - Only 295 are useful
 - All Defects Occur? Conservative Estimate?

Outline

- Introduction
- How Engineers Truncated Test Sets
- Test Results Useless for Reordering
- Defect Level Increase Calculation
 - Conclusion

Conclusion

- Statistics: Not Test Enough Defective Chips
 - For all patterns to fail
 - To predict whether a pattern will fail
- Defect Level Impact of Truncation
 - All Defects Occur? Conservative Estimate?
References

References