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ABSTRACT
Errors in computer systems can cause abnormal behavior and degrade data integrity and system

availability.  Fault avoidance techniques such as radiation hardening and shielding have been the major

approaches to protecting the system from transient errors, but these techniques are expensive.  Recently,

unhardened Commercial Off-The-Shelf (COTS) components have been investigated for a low cost

alternative to fault avoidance techniques, and Software Implemented Hardware Fault Tolerance (SIHFT)

has been proposed to increase the data integrity and availability of COTS systems.

ED4I is a SIHFT technique that detects both permanent and temporary errors by executing two

“different” programs (with the same functionality) and comparing their outputs.  ED4I maps each number,

x, in the original program into a new number x′, and then transforms the program so that it operates on the

new numbers so that the results can be mapped backwards for comparison with the results of the original

program.  The mapping in the transformation of ED4I is x′ = k⋅x for integer numbers, where k determines

the fault detection probability and data integrity of the system.

We have developed a transformation algorithm for ED4I and demonstrated how to choose an

optimal value of k for the transformation.

This paper shows that for integer programs, the transformation with k = -2 was the most desirable

choice in six out of seven benchmark programs simulated.  It maximizes fault detection probability under

the condition that data integrity is the highest.  For programs that use floating point numbers, we need two

transformed programs: the first one with 210101010
2
3

1 2×−=k  and the second one with
201010101

2
3

2 2×−=k .  We demonstrate these results by both theoretical and simulation analysis.
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1.  Introduction

Errors in computer systems can cause abnormal behavior and degrade system reliability, data

integrity and availability.  This is especially true in a space environment where transient errors are

a major cause of concern.  Fault avoidance techniques such as radiation hardening and shielding

have been the main approaches to meet the reliability requirements.  Recently, unhardened

Commercial Off-The-Shelf (COTS) components have been investigated for space applications

because of their higher density, faster clock rate, lower power consumption and lower price.

Since COTS components are not radiation hardened, and it is desirable to avoid shielding,

Software-Implemented Hardware Fault Tolerance (SIHFT) was proposed to increase the data

integrity and availability of COTS systems.

Error Detection by Data Diversity and Duplicated Instructions (ED4I) is a SIHFT

technique that detects both permanent and temporary faults by executing two “different” integer

programs with different data sets (with the same functionality) and comparing their outputs.  The

“different” programs with diverse data are generated in the following way.  Given an integer

program that contains integer variables and constants, we automatically transform it into a new

program in which all integer variables and constants are multiplied by a diversity factor k that is

an integer constant.  Depending on the factor k, the original and the transformed program may use

different parts of the underlying hardware and propagate fault effects in different ways; therefore,

if the two different programs produce different outputs due to a fault, we can detect the fault by

examining whether the results of the transformed program are also k times greater than the results

of the original program.  There are two ways to check the results. First, another concurrently

running program can compare the results.  Second, the main program that spawns the original

program and the transformed program checks their results after they are completed.

The value of the factor k determines the error detection capability of ED4I; it should

satisfy two goals.  The primary goal is to guarantee data integrity; that is, the probability that the

two programs do not produce identical erroneous outputs.  The secondary goal is to maximize the

probability that the two programs produce different outputs for the same hardware fault so that

error detection is possible (error detection probability).  However, the factor k should not cause an

overflow in the functional units.  In order to determine the optimum value of k, we have

developed an analysis technique based on the probabilistic modeling of logic networks [Parker

75] and design diversity metric [Mitra 99].  The diversity metric was used in [Mitra 99] to

quantify diversity among several designs.  We use this metric to measure the diversity between

the original and transformed programs.
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 We have implemented a preprocessor that automatically transforms a program to a new

program based on the algorithm described in Appendix I.  The flow is illustrated in Fig. 1.1.

Pre-
Processor

C source
code

C
compiler

Insert ED4I

New code
with data
diversity

Executable
code

Executable
code with

diverse data
C

compiler

Compare outputs

Compilation Program Execution

Fig. 1.1. Application procedure for ED4I.

Unlike the previous data diversity techniques [Avizienis 77][Scot 83][Laprie 90] that

target software faults, this paper presents a new approach to data diversity for on-line hardware

fault detection.  Our contributions are: (1) devising an algorithm that transforms a program to a

new program with diverse data, (2) quantifying diversity between programs using a metric that

was previously developed for hardware diversity, (3) presenting a probabilistic analysis technique

and closed form solutions to determine the optimum value of k, (4) performing simulation

experiments to illustrate how to choose k, and (5) showing how system availability is increased

by our technique.  We discuss previous work in Sec. 2 and present program transformation

algorithm in Sec. 3.  We discuss how to handle overflow in Sec. 4 and present how to determine

an optimal value of k in Sec. 5.  We show benchmark simulation results in Sec. 6, and explain

how to handle floating point numbers in Sec.7.  Finally, conclusions are presented in Sec 8.

2. Previous Work

Design diversity has been proposed in the fault tolerance literature to increase the reliability of the

system.  Design diversity is defined as the independent generation of two or more different

software or hardware elements to satisfy a given requirement [Avizienis 84].  The main objective

of design diversity is to protect redundant system from common-mode failures, which are failures

that affect more than one module at the same time [Lala 94].  Design diversity also has been

applied to software systems [Lyu 91].  N version programming (NVP) [Avizienis 77][Chen

78][Avizienis 85] is one example of diversity in software.  Design diversity in N version
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programming targets software design faults.  In N version programming, different designers

develop independent versions of the programs to avoid common design errors.  The Consensus

recovery block technique [Scot 83][Scot 87] is a hybrid system combining NVP and recovery

blocks: It is another example in which diversity is used in software.  A variant of NVP, N self-

checking programming, also employs the design diversity concept and is used in the Airbus A310

system [Laprie 90][Dugan 93].

In [Ammann 88][Christmansson 94], data diversity was proposed for detecting software

faults.  In [Ammann 88], input data in unused input space (input data that are not used during

normal execution of the program) are applied to detect faults in software, and in [Chrismansson

94], diverse data from replicated sensors are used to tolerate faults in software.

However, our technique, ED4I, is different from the previous software diversity or data

diversity techniques.  First, our target is not software design faults but hardware faults – both

permanent and transient faults in the system.  Second, while the previous techniques preserve the

original program structure and apply diverse data in different or unused input domain to the

original program, we transform a program to a new program in which the data are automatically

diversified using a transformation algorithm presented in Sec. 3.

In the transformed program, the values of all integer variables and constants are

multiplied by the diversity factor k in our technique.  This is similar to the AN code [Brown 60] in

which each data word is multiplied by some constant A, but the error detection method in our

technique is different from that in the AN code.  The AN code detects an error by checking if the

computation result is divisible by A.  By contrast, our technique detects an error by comparing the

results of the original and the transformed program (not by checking whether the result is

divisible by A or not). Our technique is also different from Recomputing with Shifted Operands

(RESO) presented in [Patel 82].  In RESO, the underlying hardware is modified so that each

operation is recomputed with shifted operands.  However, ED4I is a SIHFT technique that does

not change the original hardware.  Instead, a “different” program is created by the transformation,

and comparing outputs of the original and the new program detects errors.

 [Engel 97] suggests modifying the program so that all variables are negated.  This is the

same as using -1 for the value of k.  However, our results show that the value of k = -1 is not the

optimum value because for some functional units, data integrity is not guaranteed for k = -1. This

will be shown in Sections 5 and 6.  By contrast, our technique quantifies diversity and chooses

the optimum diversity factor k (not limited to only -1) to maximize data integrity as well as fault

detection capability.  We describe the algorithm formally in Sec. 3 and prove the correctness in

Appendix I.
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3. Program Transformation

This section presents a transformation algorithm that transforms a program to a new program with

diverse data.  We will begin with definitions of terminologies, and then describe the

transformation algorithm.  Finally, we will show an example illustrating how the transformation

is performed.

A basic block is a sequence of consecutive statements in which the flow of control enters

at the beginning and leaves at the end without branching except at the end.  By defining V = {v1,

v2,…,vn} as the set of vertices representing basic blocks, and E = {(i,j) | (i,j)  is a branch from vi to

vj} as the set of edges denoting possible flow of control between the basic blocks, a program can

be represented by a program graph, PG = {V, E}.  For example, for the program in Fig. 3.1 (a)

(the corresponding flow graph is shown in Fig. 3.1 (b)), there are four basic blocks: v1, v2, v3 and

v4 as shown in Fig. 3.1 (c).  Therefore, V = {v1, v2, v3, v4}, E = {(1,2), (2,3), (3,2), (2,4)}.

If x is k times greater than y, x is k-multiple of y.  Program transformation transforms a

program P to a new program P′ with diverse data in which all variables and constants are k-

multiples of the original values when the program P′ is executed.  It consists of two

transformations: expression transformation and branching condition transformation.  The

expression transformation changes the expressions in P to new expressions in P′ so that the value

of every variable or constant in the expression of P′ is always the k-multiple of the corresponding

value in P.  Since the values in P′ are different from the original values, when we compare two

values in a conditional statement, the inequality relationship might need to be changed. For

example, the conditional statement if (i < 5) in P needs to be changed to if (i > -10)

in P′ when k is -2.  Otherwise, the control flow determined by the conditional statements in P′

would be different from the control flow in P, and the computation result from the diverse

program P′ would not be the k-multiple of the result from the original program.  The branching

condition transformation adjusts the inequality relationship in the conditional statement in P′ so

that the control flows in P and P′ are identical.

A k-factor diverse program is a program with a new program graph PG′= {V′, E′} that is

isomorphic to PG, but all the variables and constants in P′ are k-multiples of the ones in P.

Let us define S and S′ as the sets of variables in P and P′ respectively, and define n as the

number of vertices (basic blocks) executed; then, S(n) and S′(n) are defined as:

S(n): the set of values of the variables in S after n basic blocks are executed,
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S′(n): the set of values of the variables in S′ after n basic blocks are executed.

For example, in Fig.3.1, the set of the variables in the program is S = {i, x, y, z}.  After the

program is started and one basic block is executed, n = 1 and S(1) = {i=0, x=1, y=5, z=0}

because the four statements in the first basic block are executed.  After v2 and v3 are executed, n =

3 and S(3) = {i=1, x=1, y=5, z=1}.

v4

False

Truev3

v2

v1

x := 1;
y := 5;
i := 0;
while (i < 5) {
    z := x + i * y;
    i := i + 1;
}
i := 2 * z;

x := 1;
y := 5;
i := 0;
z := 0;

i<5

z := x + i * y;
i := i + 1;

(a) (b)

i := 2 * z;

v1

v2

v3

v4

(c)

Fig.3.1. (a) An example program  (b) A flow graph (c) A program graph PG

The program transformation should satisfy:

(1) PG and PG′ are isomorphic.

(2) k⋅ S(n) = S′(n), for ∀n > 0

(where  k⋅ S(n) is obtained by multiplying all elements in S(n) by k).

The condition in (1) tells us that the control flow in the two programs should be identical.  The

condition in (2) requires that all the variables in the transformed program are always k-multiples

of those in the original program.

In the expression transformation, we build a parse tree for every expression in P, and

produce a new expression by recursively transforming the parse tree.  In the branching condition

transformation, we examine the inequality relationship in the conditional statements and modify it

according to the value of k.  Then, the transformed program always satisfies the conditions stated

in (1) and (2).  The formal description for the program transformation algorithm as well as the

correctness and proofs of the algorithm is presented in Appendix I.
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The sample program in Fig.3.1 is transformed to a diverse program and shown in Figs.

3.2 and 3.3 where k = -2.

v4

False

Truev3

v2

v1

x := 1;
y := 5;
i := 0;
z := 0;

i<5

z := x + i * y;
i := i + 1;

(a) (b)

i := 2 * z;

v4

False

Truev3

v2

v1

x :=-2;
y :=-10;
i := 0;
z := 0;

i>-10

z := x + i*y/(-2);
i := i + (-2);

i := (-4)*z/(-2);

 k = -2

Fig.3.2. (a)The original program  (b) The transformed program with k = -2.

x := 1;
y := 5;
i := 0;
while (i < 5) {
    z := x + i * y;
    i := i + 1;
}
i := 2 * z;

x := -2;
y := -10;
i := 0;
while (i > -10) {
    z := x + i * y /(-2);
    i := i + (-2);
}
i := (-4) * z / (-2);

 (a)  (b)

 k = -2

Fig. 3.3. (a) The original program  (b) The transformed program with k = -2

There are limitations in applying ED4I to floating point number arithmetic; this issue will be

discussed in Sec. 7.  Also we assume that the factor k is determined to cause no overflow when

the transformed program is executed.  The factor k can be any integer if the program contains

only integer arithmetic operations, but k should be 2l (where l is an integer) if the program

includes logical operations such as bit-wise AND, OR, or XOR.
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4. Overflow Handling

The primary cause of the overflow problem is the fact that in the transformed program (after

multiplication by k), the size of the resulting data may be too big to fit into the data word size of

the processor.  For example, consider an integer value of 231-1 in a program (with 32-bit 2’s

complement integer representation).  If the value of k is 2, then the resulting integer (232-2) cannot

be represented using 32-bit 2’s complement representation.  Also, consider a floating point

number 128

25.1 −×  with 8-bit exponent representation.  If the value of k is 2, then the resulting

floating number 825.1 ×  cannot be represented using 8-bit exponent representation.  Note that,

even if k = -1, this overflow problem will occur (e.g., consider the data value of -232;

multiplication by -1 means a data value of 232 which cannot be represented in 32-bit 2’s

complement representation). Previous hardware techniques like RESO [Patel 82] eliminated this

overflow problem by adding extra bit-slices in the datapath.  In SIHFT techniques such as ED4I,

hardware changes are avoided so that these techniques can be used with COTS components.

There are three ways to handle this overflow problem.

4.1. Scaling

The overflow problem can be solved by two scaling techniques: scaling up to higher

precision and scaling down the original data.  In the first solution, we scale up the data type in the

program to avoid overflow; data types such as 16-bit single-precision integers can be scaled up to

32-bit double-precision integer data type. Thus, modification of the program is required.

However, in the second solution, we scale down the original input data to avoid overflow and do

not modify the program.

If we have an overflow in one data type that has N bits, then we can scale up the data type

so that the data type will have more than N bits.  For example, suppose integers are represented as

16 bit words in a particular system.  If we have an overflow in a variable of this integer type, we

can change the type of the variable to double precision integer data type that uses 32-bit words.

In this way, we can avoid overflow problems.  Similarly, for double precision integer variables,

there is a possibility that we can have an overflow.  If there is no data type that can represent

more than 32-bit double-precision integers in the system, then we can combine two 32-bit double-

precision words to form a 64-bit multiple-precision integer word and change the program

appropriately.
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As an example, in Fig. 4.1, 64-bit integer x can be represented by combination of two 32-

bit double-precision integers: xl representing the lower 32 bits of x and xh representing the higher

32 bits of x.  Suppose y is also represented by yl and yh , and z is represented by zl and zh.  When

we add two numbers x and y, we need two additions; addition of lower bit words and addition of

higher bit words. A pseudo code for this addition is:

z = x + y  Å add zl, xl, yl ; the first addition for lower bit word

addc zh, xh, yh ; the second addition for higher bit word

In the code, addc is an addition with a carry bit generated by the previous addition.

The first addition in (a) reads two lower bit words (xl and xh) from registers, performs an

addition and stores a result back in the lower bit word of the result z.  The second addition in (b)

reads two higher bit words (yl and yh) from the registers, performs an addition with the carry

generated from (a), then stores the result in the higher bit word of the result z.

Similarly, scaling up the data precision requires modification of other arithmetic

computations such as subtraction, multiplication and division.  In these computations, lower bit

words and higher bit words should be computed separately.  We need to calculate lower bit words

first, subsequently, calculate higher bit words with the result from lower bit word computation

result, and then combine the two computation results to produce one word.  This modification

should be done in all arithmetic computations throughout the entire program.

Separate calculation of lower bit and higher bit words requires more execution time,

resulting in performance overhead. However, scaling up to higher precision data type will remove

the overflow problem during the execution of the program.
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xh

+

xl

yh

yl

zh

zl

carry

Registers

xh

+

xl

yh

yl

zh

zl

carry

Registers

zl = xl + yl zh = xh + yh + carry

(a)

C

(b)

C

Fig. 4.1. (a)  Lower bit word addition  (b) Higher bit word addition with a carry

In the second solution, we can scale down the data before the execution of the original

program in order to avoid overflow.  For example, suppose the input data ranges from 220 to 231 in

a sorting program, but only 32-bit integers (232) are allowed in our system.  If the most significant

bit is a sign bit, we cannot use k > 1.  In this case, we can scale down data in the transformed

program.  For example, we can use k = -2-2 so that we can avoid overflow in the transformed

program. There is a possibility that scaling down data may cause computation inaccuracy during

the execution of the program.  Therefore, when we compare the scaled down values with the

original values, we have to compare the higher order bits that are not affected by scaling down.

4.2. Data range check at compile time

Modern compiler techniques enable us to estimate the range of values for each variable in

a program.  Harrison [Harrison 77] presents a technique to determine bounds on the ranges of

values assumed by variables at various points in the program.  Patterson [Patterson 95] described

using value range propagation for accurate static branch prediction.  Stephenson [Stephenson 00]

presents a compiler technique that minimizes the bitwidth of registers by finding the minimum

number of bits needed to represent each program operand.  This data range analysis can be

applied to find a maximum bound of variables in the program and used to determine a value k that

does not cause an overflow, if such k exists.



13

4.3. Special error handlers during run-time

In many microprocessors such as the Intel Pentium, special status flags (e.g., overflow,

carry out, etc.) are reported at the end of each arithmetic operation.  If the comparison of the

original program and the transformed program produce a mismatch, then an error handler must be

invoked for recovery.  Special functions can be written inside the error handler to check the

overflow bit of the status register.  If a mismatch occurs and the overflow bit is not set (assuming

no error occurred in the status flags), the error handler knows that the mismatch is due to a fault

and invokes a recovery process on the assumption that an error has occurred during execution.

On the other hand, when a mismatch occurs and the overflow bit is set, the error handler knows

that the mismatch is due to an overflow and requests an overflow recovery.  The overflow

recovery process can execute another version of the transformed program with a different value

of k that is less than the previous value.  In this case, we have assumed that several versions of the

transformed program with different values of k are available in the system.  We have to consider

the case when an error occurs in data and the overflow bit is also erroneously set.  In this case, the

error handler will report an overflow and re-execute the programs.  If the data error and overflow

error were transient, re-execution of the programs will produce correct results.  If only the

overflow bit error was transient, re-execution of the program will detect the permanent fault in the

data path.  If the overflow bit was permanently stuck at 1, every computation will report an

overflow.  These repeated overflow indications will be caught by the operating system.  A

flowchart showing decision steps is illustrated in Fig. 4.2.
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execute P execute P′  with k1

overflow overflow
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Fig. 4.2. A flowchart for the determination of overflow and errors.

5. Determination of k

The factor k determines how diverse the transformed program is.  This section considers how to

choose an optimal value of k that maximizes the diversity of the transformed program.  For this

purpose, we have developed two metrics to measure the diversity of the transformed program:

data integrity and fault detection probability.  An optimal value of k is the value that satisfies two

goals: the primary goal is to maximize the data integrity and the secondary goal is to maximize

the fault detection probability.  Data integrity is more important because it guarantees no

undetected error.  For any given program, we first analyze the data integrity and fault detection

probability of each functional unit of the system for various values of k.  Next, as described in

Sec.5.6, we use these values to create an optimal value of k for the transformed program by

looking at execution profiles of the programs.

Sec. 5.1 presents a diversity metric we have adopted from [Mitra 99], in which a diversity

metric for systems with redundant hardware has been developed.  From Sec. 5.2 to Sec. 5.5, we

analyze data integrity and fault detection probability in functional units: bus, adders, a multiplier,

and a shifter.  In our analysis, we consider integers from –5 to 5 for the value of k. Integers whose
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absolute values are greater than 5 are not considered for k in this paper because they have higher

probability of overflow than the values considered.  The analyzed data integrity and fault

detection probability for functional units will be used in the next section to determine the

optimum value of k for benchmark programs using execution profiles of the programs.

5.1.  Diversity Metric: Fault Detection Probability & Data Integrity

Researchers have studied techniques to quantify diversity in multiple designs and which

technique should be used to measure the diversity [Eckhardt 85][Litt 89][Lyu 91]. They use

random variables Π and X to represent arbitrary programs and arbitrary inputs, and the

probability that Π fails on X is calculated.  Our diversity metric is somewhat different because we

need to compute the probability that a program fails due to a hardware fault in the system.

In our approach, fault detection probability and data integrity quantify diversity between

two programs running on the same hardware.  Let us define:

X the set of corresponding inputs to a functional unit hj in the system when an

integer program P executes

X′ the set of corresponding inputs to a functional unit hj in the system when an

integer program P′ executes

x a particular input to hj produced by P and x ∈ X

x′ a particular input to hj produced by P′ and x′ ∈ X′

|X| the number of elements in the set X

Then, the output y of hj with input x and the output y′ of hj with input x′ should satisfy the

relationship y′ = k⋅y unless a fault occurs in hj without any overflow.  In the presence of a fault fi

in hj, let us define:

Ei the subset of X that contains inputs producing incorrect outputs in hj

Ei′ the subset of Ei that contains inputs producing incorrect outputs that erroneously

satisfies the relationship y′ = k⋅y in the presence of a fault fi

Then, |Ei  − E′i| is the number of incorrect outputs that have the relationship y′ ≠ k⋅y and

are detected the fault by mismatch.

We define the fault detection probability in hj, Cj(k), as:

(3) ∑∑ 
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Moreover, we define the data integrity in hj, Dj(k), as:
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where Nf denotes the total number of faults in hj.

For various values of k, Cj(k) and Dj(k) of hj can be obtained by either probabilistic

method or simulation method.  They are weighted by execution frequency uj of hj in the program

execution profile and summed to obtain the overall C(k) and D(k) for a particular program.
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An optimal k is the value that maximizes C(k) with the highest D(k).

From Sec.5.2 to Sec.5.5, we show Cj(k) and Dj(k) in functional units; then, in Sec. 5.6, we

show how to determine optimal values of k for each benchmark program.

5.2. Bus Signal Line

An M bit bus consists of M parallel signal paths.  As shown in Fig. 5.1, the source places an M bit

signal x on the M bit bus.  If the ith bit of the bus has a stuck fault, the destination may receive a

corrupted x.  If there is a parity bit on the bus, a single bit error can be detected by parity check.

However, if there is no parity on the bus, the fault on this bus can be detected by the ED4I

technique.

If we put x of the original program and x′ (= kx) of the diverse program on the bus one

after the other, the fault will affect x and x′ in different ways.  If the fault corrupts either x or x′,

but not both, the relationship x′ = k⋅x in the destination will not be satisfied.  On the other hand, if

the fault corrupts both x and x′ in different ways, the relationship x′ = k⋅x in the destination may

or may not be satisfied.  If neither x nor x′ provoke the fault, the destination will receive correct

values and also satisfy x′ = k⋅x.  In this case, the fault does not corrupt the information.

If k is –1 or a power of 2, we can get closed form solutions for the data integrity and fault

detection probability.  The closed form solutions are derived in Appendix II and summarized in

Table 1.  Table 2 shows fault detection probability Cj(k) and data integrity Dj(k) for different
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values of k in a 12 bit (M = 12) bus as an example.  A simulation method applying exhaustive

input patterns in the presence of faults is used when k is not –1 nor a power of 2.  In the table,

negative numbers are represented in a 2’s complement representation that is widely used in most

microprocessors.

 M bit bus

Source

Destination

stuck fault at ith bit

Fig. 5.1.  An M bit bus transferring information from a source to a destination unit.

Table 1. Closed form solutions for Cj(k) , Dj(k) in the presence of a fault in the ith bit of M-bit bus.

k = -2l (l > 1) k = -2 k = -1 k = 2 k = 2l (l > 1)

Cj(k) Mli 2

1
)

2

1
1(

2

1

4

3
1

−−+ − M2

1

4

3 −
12

1
1 +−

i 4

3
)

2

1
1(

2

1

4

3
11 −+ −+

li

Dj(k) 1 1 1 1 1

Table 2. Cj(k) and Dj(k) in a 12 bit bus (M = 12). Equation (5) is used to calculate values.

k = -5 k = -4 k  = -3 k = -2 k = -1 k = 2 k = 3 k = 4 k = 5

Cj (k) 0.7433 0.7780 0.7593 0.7500 0.9167 0.7500 0.6574 0.7656 0.6733

Dj(k) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

In Table 2, the highest fault detection probability occurs when k = -1.  The value –1 for k

has an advantage that the chance of overflow is very low.  On the other hand, C(k) is larger when

|k| is 2 and 4 compared to the cases when k is an odd number such as 3 and 5.  Therefore, the

greatest value of k = 2l might be the best choice for the lowest performance overhead (as long as

an overflow does not occur) because multiplication by 2l can be replaced by l-bit shifting

operation that usually takes one cycle in most microprocessors.
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5.3.  Adder

An iterative logic array such as a ripple carry adder consists of multiple logic cells cascaded in

series.  It receives carries from a previous cell and inputs to this cell; then, it produces outputs and

subsequently generates a carry to the next cell.

The regularity of the array helps us to calculate the fault detection probability when the

multiplying factor k is 2l, where l is an integer.  Suppose one node of the cell si has a stuck fault.

If x is an output of the array, the ith bit of x may be corrupted.  In the transformed program, if x′ =

kx is the output of the array, the ith bit of x′ may be corrupted; however, this is equivalent to that

the i-lth bit of x is corrupted because x′ is an l bit shifted x.  Therefore, we can calculate the

probability of provoking the faults in two cells si-l and si, and get the probability of mismatch

between x and x′, i.e., Pr{k⋅x ≠ x′}.

 This section considers adders as an example of an iterative logic array.  We analyze the

probability that a signal changes from 0 to 1 and from 1 to 0 in every node in the adder and

compute the probability of provoking the faults using the method in [Parker 75]. This analysis

gives us the probability Cj (k).  The details of the analysis technique are described in Appendix II.

For every single stuck-at fault f in a ripple carry adder and a carry look-ahead adder, we

calculated the values of Cj(k) and Dj(k) using our analysis technique and exhaustive simulation of

all possible input combinations with various values of k.  The numbers are reported in Table 3

and Table 4.

As shown in Table 3 and 4, we cannot achieve data integrity of 1 when k = -1; this

explains why our technique is better than [Engel 97] in which all variables are negated (same as k

= -1 in our technique).  If k is -1, there are some faults in the adder that will not be detected.  For

example, suppose one of the XOR gate’s output is stuck at 0 in a full adder of the ith stage si of

the adder (Fig. 5.2).  If the input a of the adder is 2i, and the other input b is 1, this fault cannot be

detected as described in Fig. 5.2 (b).  From this observation, we can see that the value -1 is not

suitable for k in terms of data integrity.

For the same absolute value of k, a negative k has higher fault detection probability than a

positive k.  Multiplying by an odd number such as 3 is not as efficient as multiplying by 2, which

is just a one bit shifting operation.  Therefore, we do not need to choose 3 for k, which is a more

expensive operation than shifting by just one bit.

Among the values shown in the table, k = -2 shows the highest fault detection probability

under the condition that data integrity is 1.
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Table 3. Cj(k) and Dj (k) in a 12 bit ripple carry adder with various k values

k = -5 k = -4 k = -3 k = -2 k = -1 k = 2 k = 3 k = 4 k = 5

Cj(k) 0.643 0.657 0.639 0.662 0.665 0.594 0.563 0.612 0.557

Dj(k) 1.000 1.000 1.000 1.000 0.951 1.000 1.000 1.000 1.000

Table 4. Cj(k) and Dj(k) in a 12 bit carry look-ahead adder with various k values

k = -5 k = -4 k = -3 k = -2 k = -1 k = 2 k = 3 k = 4 k = 5

Cj(k) 0.609 0.620 0.603 0.629 0.639 0.559 0.537 0.578 0.522

Dj(k) 1.000 1.000 1.000 1.000 0.963 1.000 1.000 1.000 1.000

s/0

 si

 ci+1

 ai

 ci

 bi

  &

  &

  &

  +

 xor
 xor

     (a=)…00010…00

+   (b=)…00000…01

…00000…01

    (-a=)…11110…00

+  (-b=)…11111…11

…11111…11

Si Si

identical in 2’s complement representation

(a) (b)

Fig. 5.2. (a) s/0 at the output of XOR gate in Si, the ith cell of a ripple-carry adder.

(b) The s/0 fault shown in (a) cannot be detected by comparing the two values although

         we have erroneous computation results.

5.4.  Multiplier

Many different implementations for multipliers exist, and data integrity and fault detection

probability depend on the particular design implementation.  In this section, we consider a

parallel array multiplier [Weste 92] to demonstrate the dependence of Cj(k) and Dj(k) on various

values of k.  The parallel array multiplier has a regular cell structure as shown in Fig. 5.3 in which

a 4-bit multiplier is illustrated.
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Fig. 5.3.  A 4-bit parallel array multiplier.

In a 12 bit array multiplier as an example, we randomly selected a node in the multiplier

and injected a stuck fault into the node.  We injected a fault randomly, applied exhaustive input

patterns to the multiplier in the presence of a fault and repeated simulations 104 times.  We show

the result in Table 5.

The table shows only positive values of k because the array multiplier treats negative

number multiplication as a positive number multiplication after changing the sign of the negative

numbers.

The table shows us that the highest Cj(k) in the table occurs when k = 4.  Note that, when

k = -1, Cj(k) = Dj(k) = 0 because the array multiplier converts the transformed program’s negative

numbers to original positive numbers before multiplication.  This results in the same

multiplication in the original and transformed program, and consequently, the fault cannot be

detected.
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Table 5. Cj(k) and Dj(k) in a 12 bit parallel array multiplier

k = 2 k = 3 k = 4 k = 5

Cj(k) 0.5978 0.5851 0.5997 0.5887

Dj(k) 1.0000 1.0000 1.0000 1.0000

5.5.  Shifter

Since multiplication or division by a power of 2 can be replaced by shifting operation, shifters are

used frequently during program execution [Weste 92].  Because a multiplexer-based shifter as

shown in Fig. 5.4 [Weste 92] is widely used, we will take this design for our simulation.

In our simulation, we injected a stuck-at fault into a randomly selected node and applied

exhaustive patterns to 16 bit shifter inputs.  This simulation experiment was repeated for 104

times with a randomly chosen single stuck-at faults.  The results are shown in Table 6.

In this shifter implementation, Table 6 shows that the value of -1 for k has the highest

fault detection probability with guaranteed data integrity.

IN<3>

IN<2>

IN<1>

IN<0>

IN<3>

IN<2>

IN<1>

IN<0>

SHIFT<0> SHIFT<1> SHIFT<2>

OUT<3>

OUT<2>

OUT<1>

OUT<0>

Fig. 5.4. A 4-bit multiplexer-based shifter.

Table 6. Cj(k) and Dj(k) in a 16 bit multiplexer-based shifter

k = -5 k = -4 k  = -3 k = -2 k = -1 k = 2 k = 3 k = 4 k = 5

Cj(k) 0.3572 0.3685 0.3722 0.3754 0.4228 0.3198 0.2900 0.3124 0.2927

Dj(k) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9963 1.0000 0.9963
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5.6.  Determination of k for benchmark programs

We have observed that in different functional units, we have different values of k that maximize

the fault detection probability and data integrity.  For example, the bus has the highest fault

detection probability when k = -1, but the array multiplier has the highest fault detection

probability when k = 4.  Therefore, programs, such as matrix multiplication that use a multiplier

extensively, will need 4 or -4 for the value of k to obtain the highest fault detection probability.

However, programs such as sorting that use memory buses heavily to communicate with memory

for loading and storing data need –1 for the value of k to maximize its fault detection probability.

Hence, an execution profile of a program showing execution frequencies of each functional unit

is necessary to determine the best k for a particular program.

Table 7 shows execution profiles obtained from simulating several benchmark programs

in a MIPS simulator.  The simulator gives us the execution frequency of each functional unit

when benchmark programs are executed.  The first three entries (add/sub, multiplication, and

shift) in the table represent the execution frequencies of instruction types that use an adder, a

multiplier, and a shifter relatively.  The fourth entry, a memory access type, is an operation that

mainly uses the memory bus.  For a branch instruction type, we assume that a carry-look ahead

adder is mainly used. The rest of the instruction types are included in the entry of the last row.  In

Table 8 and Table 9, C(k) and D(k) are calculated from equation (6), which uses the values of

Cj(k) and Dj(k) from Table 1 to Table 6.

An optimal value of k must satisfy the primary and the secondary goals.  The primary

goal is to maximize the data integrity and the secondary goal is to maximize the fault detection

probability.  Table 8 shows the values of k that satisfies the primary goal of maximizing data

integrity.  Those values are indicated by shaded entries in the table.  Under the condition that this

primary goal is satisfied, Table 9 shows the value of k that maximizes the fault detection

probability (indicated by shaded entry in the table). Therefore, the value in the shaded entry in

Table 9 is an optimum k for each benchmark program.

Although the highest fault detection probability occurs when k = -1 in six benchmark

programs, the value of –1 is not a good choice for k because the data integrity is the lowest when

k = -1.  In those benchmark programs, -2 is the best choice for k because the fault detection

probability is maximized (shaded entries in Table 9) under the condition that data integrity is the

highest (shaded entries of Table 8).
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Table 7. Execution frequencies of instruction types in bench mark programs.

I-sort Q-sort Lzw Fib Mat-mul Shuffle Hanoi

add/sub 50.7% 50.7% 44.8% 46.4% 51.1% 42.3% 33.7%

multiplication 0% 0% 0% 0% 10.0% 1.0% 0%

shift 5.2% 6.3% 2.5% 0% 1.8% 33.7% 4.0%

memory access 21.6% 23.5% 32.7% 28.6% 29.8% 19.3% 51.5%

branch 22.5% 19.5% 19.4% 25.0% 7.3% 2.7% 10.8%

others 0% 0% 0.6% 0% 0% 1.0% 0%

Table 8. Data Integrity D(k) calculated with various values of k in benchmark programs.  Note that
Shaded areas indicate the highest data integrity in a row.

k = -5 k = -4 k  = -3 k = -2 k = -1 k = 2 k = 3 k = 4 k = 5

I-sort 1.0000 1.0000 1.0000 1.0000 0.9641 1.0000 0.9998 1.0000 0.9998

Q-sort 1.0000 1.0000 1.0000 1.0000 0.9656 1.0000 0.9998 1.0000 0.9998

Lzw 0.9940 0.9940 0.9940 0.9940 0.9625 0.9940 0.9939 0.9940 0.9939

Fib 1.0000 1.0000 1.0000 1.0000 0.9650 1.0000 1.0000 1.0000 1.0000

M-mul 1.0000 1.0000 1.0000 1.0000 0.8714 1.0000 0.9999 1.0000 0.9999

Shuffle 0.9900 0.9900 0.9900 0.9900 0.9580 0.9900 0.9888 0.9900 0.9887

Hanoi 1.0000 1.0000 1.0000 1.0000 0.9782 1.0000 0.9999 1.0000 0.9998

Table 9. Fault detection probability C(k) calculated with various values of k in bench mark
programs.   Shaded areas indicate the highest fault detection probability under the
condition that data integrity is the highest (shaded areas in Table 8).

k = -5 k = -4 k  = -3 k = -2 k = -1 k = 2 k = 3 k = 4 k = 5

I-sort 0.6491 0.6621 0.6511 0.6661 0.7068 0.6134 0.5692 0.6262 0.5837

Q-sort 0.6479 0.6607 0.6505 0.6646 0.7089 0.6134 0.5680 0.6256 0.5824

Lzw 0.6642 0.6763 0.6678 0.6796 0.7373 0.6346 0.5837 0.6484 0.5986

Fib 0.6710 0.6836 0.6734 0.6872 0.7370 0.6386 0.5900 0.6536 0.6053

M-mul 0.6617 0.6813 0.6647 0.6766 0.6691 0.6359 0.5884 0.6480 0.6023

Shuffle 0.5586 0.5705 0.5654 0.5751 0.6187 0.5258 0.4838 0.5328 0.4946

Hanoi 0.6699 0.6934 0.6769 0.6823 0.7679 0.6519 0.5903 0.6638 0.6051

Table 10. Optimum value of k determined for each benchmark programs.

I-sort Q-sort Lzw Fib Mat-mul Shuffle Hanoi

Optimum k -2 -2 -2 -2 -4 -2 -2
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During the execution of the six benchmark programs (I-sort, Q-sort, Lzw, Fib, Shuffle,

and Hanoi), the most frequently used functional units are adders.  A carry-look ahead adder and a

ripple carry adder have the highest fault detection probability (under the condition that data

integrity is the highest) when k = -2; thus, k = -2 is also the optimum value for those programs.

On the other hand, the matrix multiplication program extensively uses the multiplier more often

than the other six benchmark programs.  Because the fault detection probability in the array

multiplier is the highest when k = -4, the fault detection probability in the matrix program is the

highest when k = -4.

Finally, Table 10 shows the optimum value of k for each benchmark program.

6. Simulation Results

In Sec. 5, we determined the optimum value of k for each benchmark program by looking at the

execution profile of the program.  In this section, we will verify our decision on the optimum

value of k by simulating the benchmark programs in a MIPS simulator. We built a MIPS

simulator that reads an assembly program, executes instructions, and emulates the functional units

at the gate level for a fault injection simulation.  We injected a stuck fault into randomly selected

node of the functional units and generated output patterns, which may be corrupted if the inputs

provoke the fault.  We generated two output patterns in each functional unit: one from the

original program and the other from the transformed program.  We compared their outputs,

counted detected and undetected incorrect outputs, and averaged them over all simulated single

stuck faults.   They are weighted by execution profiles of the programs, and finally C(k) and D(k)

are obtained.  The results are shown in Table 11 and Table 12.  Table 13 shows the optimum

values of k determined by simulation for the benchmark programs.  The reader can verify that

Table 13 is identical to Table 10; this demonstrates that our results in Sec. 5 agrees with the

simulation results.

The numbers in Table 11 and Table 12 are slightly different from the numbers in Table 8

and Table 9, in which we assume the uniform probability of all numbers in the entire range of the

inputs.  However, when we simulate benchmark programs in our MIPS simulator, we cannot

assume the uniform probability of actual inputs to the programs.  For example, the sorting

program in the simulation does not sort the entire range of integer numbers (from –231 to 231)

available in a 32-bit machine.  Instead, it sorts the numbers that are smaller than ten thousand.

Thus, there are slight discrepancies between the expected probabilities and the values obtained

from simulation.
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Table 11. D(k) with various values of k simulated in benchmark programs. Note that Shaded
areas indicate the highest data integrity in a row.

k = -5 k = -4 k  = -3 k = -2 k = -1 k = 2 k = 3 k = 4 k = 5

I-sort 1.0000 1.0000 1.0000 1.0000 0.9641 1.0000 0.9998 1.0000 0.9998

Q-sort 1.0000 1.0000 1.0000 1.0000 0.9585 1.0000 0.9998 1.0000 0.9998

Lzw 0.9900 0.9940 0.9882 0.9940 0.9940 0.9940 0.9852 0.9940 0.9785

Fib 1.0000 1.0000 1.0000 1.0000 0.9590 1.0000 1.0000 1.0000 1.0000

M-mul 1.0000 1.0000 1.0000 1.0000 0.9721 1.0000 0.9999 1.0000 0.9999

Shuffle 0.9876 0.9796 0.9872 0.9900 0.9680 0.9900 0.9830 0.9898 0.9763

Hanoi 1.0000 1.0000 1.0000 1.0000 0.8309 1.0000 0.9999 1.0000 0.9998

Table 12. C(k) with various values of k simulated in benchmark programs. Shaded areas indicate
the highest fault detection probability under the condition that data integrity is the highest
(shaded areas in Table 11).

k = -5 k = -4 k  = -3 k = -2 k = -1 k = 2 k = 3 k = 4 k = 5

I-sort 0.6762 0.6837 0.6768 0.6901 0.6683 0.4420 0.4540 0.4493 0.4459

Q-sort 0.6810 0.6761 0.6841 0.6862 0.6866 0.5173 0.4848 0.5231 0.4821

Lzw 0.7202 0.7158 0.7192 0.7312 0.7400 0.5147 0.4880 0.5324 0.4837

Fib 0.6974 0.7199 0.7027 0.7249 0.7551 0.5324 0.5035 0.5314 0.5011

M-mul 0.6847 0.6907 0.6848 0.6898 0.6411 0.5425 0.5167 0.5526 0.5093

Shuffle 0.5614 0.5604 0.5703 0.5678 0.6019 0.4895 0.4576 0.4982 0.4609

Hanoi 0.7403 0.7649 0.7407 0.7730 0.7769 0.5453 0.5172 0.5593 0.5135

Table 13. Optimum value of k determined for each benchmark programs by simulation.

I-sort Q-sort Lzw Fib Mat-mul Shuffle Hanoi

Optimum k -2 -2 -2 -2 -4 -2 -2

7. Floating Point Numbers

There are several ways that non-integers can be represented.  Examples include using fixed point

representation and using a pair of integers (a, b) to represent the fraction a/b.  However, only

floating point representation has gained widespread use [Hennessy 96].  In this floating point

system, a computer word is divided into three parts: a sign, an exponent and a fraction.  As an

example, in the IEEE standard 754 [IEEE 85], single-precision numbers are stored in 32 bits: 1
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bit for the sign s, 8 bits for the exponent e, and 23 bits for the fraction f as shown in Fig. 1.  In this

paper, we assume that floating point numbers are represented in the IEEE standard 754 format.

fes

1 bit 8 bits 23 bits

Fig. 7.1. A single-precision floating point number in IEEE standard 754.

The exponent is a signed number represented using the bias method with a bias of 127.  The

fraction f is the fraction part of the mantissa, i.e., mantissa = 1.f.  Thus, the number being

represented is s × 1.f × 2e-127 [IEEE 85].  For example, a decimal number 1.5 can be represented

as 1.12 × 20 in two’s complement representation, because 1.510 = 1 + 0.5  = 12 + .12 = 1.12 × 20 (s

= 0, f = .1 and e = 127). Since floating point numbers and integers have different representations,

floating point computation is usually distinguished from integer computation and performed in a

special functional unit called a Floating Point Unit (FPU).

Having three parts in one word in floating point representation creates some difficulty in

applying ED4I to floating point numbers because multiplying by k may not shift nor change many

bits in one word.  For example, if the value of k is –1 and we multiply the original data by this k,

only one bit of the word (the sign bit in the representation) is changed, and the rest of the word

remains unchanged.  If k is a power of 2, only some bits in the exponent portion e are changed,

but the fraction part f is not changed. For example, consider a decimal number 1.5 again.  In 2’s

complement representation, 1.510 is 1.12 × 2127  (s = 0, e = 127, f = .1).  If we multiply 1.510 by 2,

the result is 310 in decimal representation and 1.12 × 2128 (s = 0, e = 128, f = .1) in 2’s complement

representation.  As we can see, there is no change in fraction part f of 2’s complement

representation.  In other words, the data in the transformed program are not much changed no

matter whether we transform a program with the factor k or not; thus, we cannot guarantee data

integrity if we have a stuck-at fault in the fraction part.

Our approach to solve this problem is to find a value of k for the fraction and the

exponent separately and combine those values to get the best value for k.

7.1. The value of k for fraction

Firstly, let us consider the fraction part.  We choose k = 2
3 for the fraction part because it

satisfies the following criteria: (1) guaranteed data integrity in the fraction, (2) no underflow in
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the transformed program, (3) low probability of overflow, and (4) ability to easily locate an error.

The detailed explanations are as follows.

1) Guaranteed data integrity

Let us denote a floating point number x as nms 2×× , where s is a sign, m is a mantissa, and n is

an exponent.  The mantissa m is always 21 <≤ m  because of normalization.  Suppose stuck-at 1

fault occurs in the ith bit (from the most significant bit) of the mantissa m; then, it will add e = 2-i

to m if it is provoked.

i) In the original program

If we denote xe as a corrupted x by this stuck-at 1 fault,

(7) 21,2)( <+<×+×= ememsx n
e .

ii) In the transformed program
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2
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However, a mantissa cannot be greater than 2; thus, if 22
3 >m , the mantissa is right-shifted by 1

(divided by 2) and normalized.  This normalization will add one to the exponent.  In other words,
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The same stuck-at 1 fault corrupts the ith bit of the mantissa and adds e = 2-i as it did in the

original program. If we denote x′e  as a corrupted x′ by this stuck-at 1 fault,
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iii) Comparison

We have to check if the value of x′e is erroneously equal to the value of kxe.  If the values are

same, data integrity is not guaranteed.  From (7),
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compare the mantissas in (8) with those in (9), they are all different values.  Thus, x′e never equals
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to kxe, and the stuck-at 1 fault can be detected by comparing these two values.  Therefore, data

integrity is guaranteed.

Similarly, we can prove that data integrity is also guaranteed when stuck-at 0 fault

occurs.

(2) No underflow

Since k > 1, we do not have an underflow in the floating point number of the transformed

program.

(3) Low probability of overflow

When we multiply the data by k < 2, the exponent of the original data increases at most by one.

If a maximum value of data is less than 12712722 22
8

=−−  in IEEE standard 754 format, we can

guarantee no overflow in the transformed program.

(4) Ability to easily locate an error

If we subtract the mantissa of x′e from the mantissa of kxe, the result is either ee 4
1

2
1 or  .

Since e is the stuck-at fault in the ith bit, e2
1  is the i+1th bit (one bit right-shifted e) and e4

1  is the

i+2th bit (two bit right shifted) in the mantissa.  Therefore, when we want to locate an error, we

perform kxe - xe; then, if the result is 2-j, the stuck-at fault occurred in either j-1th bit or j-2th bit.

7.2. The value of k for exponent

Secondly, let us consider the value of k for the 8-bit exponent of the floating point

number.  We use two transformations to guarantee data integrity in the exponent.  We choose

2101010102=k for the first transformation and 2010101012=k for the second transformation.  In this

case, we have assumed that these k’s will not cause an overflow.  (However, if there is an

overflow, we can use the scaling techniques described in Sec. 4.)

When we multiply the original value by k, the exponent of k is added to the exponent of

the original value.  Thus, 101010102 is added to the exponent of the original data in the first

transformation, and 010101012 is added to the exponent of the original data in the second

transformation.  Then, we will prove later that every bit of the exponent of the original value can

be complemented either by the first transformation or by the second transformation.  If every bit

of the exponent field can be complemented in the transformed programs, a single stuck-at fault in

the exponent field can be detected.
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First, suppose a stuck-at fault is provoked and produced an error in the original program.

Since every bit in the exponent can be complemented in the transformed programs, the stuck-at

fault will not be provoked in at least one of the transformed programs.  Thus, when we compare

the corrupted value in the original program with the uncorrupted value in the transformed

program, we can detect the error.  Second, suppose the stuck-at fault is not provoked in the

original program.  Then, it will be provoked in at least one of the transformed programs and the

data will be corrupted.  We can detect the error by comparing the corrupted value with the

uncorrupted value.  Therefore, a single stuck-at fault in the exponent field can be detected.

Now, let us prove that every bit of the exponent of the original value can be

complemented either by the first transformation or by the second transformation.

Proof. Let an exponent n < 2N can be represented by i
N

i
ibn 2

1

0
∑

−

=

= , where bi = 0 or 1, and N is the

number of bits in the exponent.  For an integer 0 < h < N, define nh as

∑
−

=

=−=
1

0

2)12(&
h

i

i
i

h
h bnn , where & represents logical AND operation; then, nh is always 0 ≤ nh

< 2h.  First, let us assume h is an even number.  Define p, ph, q and qh as:

)12(&

2

)12(&

2

1

0

12

1

0

2

2

2

−=

=

−=

=

∑

∑

−

=
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−

=

h
h

i

i

h
h

i

i

qq

q

pp

p

N

N

Fig. 7.2 shows the numbers we have defined.

 n = bN-1… bh bh-1…b1b0

 nh = 0  0 0  bh-1…b1b0

 p = 1  0 … 0  1 0 …1 0

 ph = 0  0 … 0  1 0 …1 0

 q = 0  1 … 1  0 1 …0 1

 qh = 0  0 … 0  0 1 …0 1
.

Fig. 7.2. n, nh, p, ph, q and qh.
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Now, let us define zh as h
h

h
h qz 22 <−= ; then, zh represents the smallest number of nh that can

produce a carry from the bit bh-1 to bh when it is added by q.

i) When 0 ≤ nh < zh.

n + q does not produce a carry from bh-1 to bh because nh is less than zh.  Therefore, bh is

complemented by adding q.

 n = bN-1… bh bh-1…b1b0

+) q = 0  1 … 1  0 1 …0 1

   n + q = …… bh  ……

 no carry

 complemented

ii) When zh ≤ nh < 2h.

Since ph > qh, nh + ph > nh + qh > zh + qh = 2h; thus, n + p will always produce a carry

(2h) from bh-1 to bh.  Therefore, bh is complemented by adding p.

 n = bN-1… bh bh-1…b1b0

+) p = 1 0 … 0  1 0 …1 0

   n + p = …… bh  ……

carry

 complemented

From i) and ii), bh for any even number 0 < h < N is always complemented by either p or

q.  Similarly, we can prove that bh is always complemented by either p or q when 0 ≤ h < N is an

odd number or zero.  Therefore, every bit of n is always complemented by either p or q.

7.3. The value of k for floating point numbers

We have selected k = 2
3  for detecting an error in the fraction of a floating point number

representation.  We also have selected 2101010102=k  and 2010101012=k  for the exponent.  As a

result, we use 210101010
2
3

1 2×−=k  for the first transformation and 201010101
2
3

2 2×−=k  for the

second transformation.
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In a simulation experiment using 210101010
2
3

1 2×−=k  and 201010101
2
3

2 2×−=k , we

analyzed the data integrity and the fault detection probability in the bus, CLA adder, and

multiplier.  We applied all possible binary input patterns to these functional units in the presence

of a randomly selected fault and checked whether the fault was detected or not.  We repeated

simulations 104 times for each functional unit.  Fig. 7.3 shows the simulation results.  In Fig. 7.3,

(a) shows that data integrity is guaranteed in these functional units.  In Fig. 7.3 (b), we can see

that data integrity is guaranteed in the bus, but not in the CLA adder.  If the CLA adder has a

stuck-at fault in some of carry signal lines, we miss less than 3% of the injected faults.  Also, note

that the multiplier is not shown in (b) because exponent multiplication is not required in floating

point addition, subtraction, multiplication and division.

The simulation results show that using 210101010
2
3

1 2×−=k  and 201010101
2
3

2 2×−=k  can

guarantee data integrity for all floating point computations except the exponent addition.  Only in

the exponent addition, data integrity is not guaranteed for 100%, but it is still higher than 97%.

(a) (b)

Fig. 7.3. Simulation results: Data integrity and fault detection probability in (a) fraction and (b)
exponent of IEEE 754 single precision.

7.4. Using integer units for floating point computation

Our another approach to guarantee data integrity in floating point computation is to use

an integer functional unit for floating point calculation in the transformed program.  The original

program uses the FPU whereas the transformed program uses the integer unit for the same
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calculation.  When we use integer units for floating point numbers, we can use available floating

point number computation library or write our own code. It is true that using the integer unit for

floating point calculation will cause performance overhead.  However, this technique will

guarantee data integrity because we use different hardware for the same computation.  In this

case, we use different resources for computation by converting a floating point number into three

integers and performing separate integer computations.

For example, the pseudo code in Fig. 7.4 outlines major steps needed to perform

multiplication.  For simplicity, we omit the details such as adjusting the exponent bias, shifting

the fraction and rounding numbers.

z = mul(x, y)
mul(float x, float y)
{
    fx = x AND MASK_FRACTION;
    fy = y AND MASK_FRACTION; parallel execution
    fz = fx * fy;
    xe = x AND MASK_EXPONENT;
    ye = y AND MASK_EXPONENT;
    ez = ex + ey;
    sz = (x XOR y) AND MASK_SIGN;
    z = sz OR ez OR fz;
    return z
}

Fig. 7.4. A pseudo code using integer units for floating point multiplication.

In the code, MASK_FRACTION, MASK_EXPONENT, MASK_SIGN are constant mask bits.

Performing logical AND with the mask bits, we extract a fraction and an exponent from the

floating point number x and store them in fx and ex respectively.  Similarly, fy and ey contain a

fraction and an exponent extracted from y. Then, fxfy produces fz using an integer multiplier, and

ex + ey produces ez using an integer adder.  By combining sz, ez and fz using logical OR, we can

create a new result z.

Furthermore, execution overhead can be reduced by executing multiple instructions in

parallel.  As shown in the figure, exponent addition and fraction multiplication can be executed

simultaneously in super-scalar and VLIW processors.  For example, an integer multiplication

takes 5 cycles and an integer addition takes 1 cycle in MIPS R10000, and they can be executed in

parallel.  While computing multiplication fxfy , we can concurrently calculate exponent using the

adder instead of idling the adder.  Timing diagram of this parallel execution is shown in Fig. 7.5.

The timing diagram shows only major steps described in Fig. 7.4, but readers can clearly see that

parallel execution reduces execution time overhead.  For example, in MIPS R10000, floating
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point multiplication using FPU takes 2 cycles.  In this case, execution overhead will be 7/2 = 3.5

(assuming no rounding of numbers). In contrast, serial execution of the pseudo code will take 10

cycles (3 cycles for sign, exponent and fraction extraction, 1 cycle for addition, 5 cycles for

multiplication, 1 cycle for XOR, and 1 cycle for OR), resulting in overhead of 10/2=5.  We can

achieve 30% speed-up by parallel execution.

Floating point addition, subtraction and division algorithms are described in detail in

[Hennessy 96] and can be also implemented in software using integer unit.  There is a possibility

that we will have precision errors between the computation results from integer unit and those

from FPU.  In this case, we need to check whether the difference between the two results is

within a threshold or not, rather than check exact match between them.

In summary, using different hardware – integer unit and floating point unit – for the same

computation will guarantee data integrity for the system.  However, floating point computations

using integer unit will cause performance overhead.

fxexsx fyeysyx′ : y′:

sx sy

ex ey

fx fy

+

×

xor
ez fz

sz ez fzz′ = x′y′ :

T = 0

T = 1

T = 2

T = 3

T = 6

T = 7

Time

Fig. 7.5.Timing diagram for parallel execution of the code in Fig. 7.5
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8. Summary

In this paper, we have presented the ED4I technique based on data diversity to detect hardware

faults in the system without any hardware modification.  Unlike previous techniques, our

technique is a pure software method that can be easily implemented in any system.  ED4I

transforms a program to a new program with the same functionality but with diverse data without

changing the complexity of the original program.

The factor k determines how diverse the transformed program is.  To determine the

optimum value of k, we have used data integrity and fault detection probability as metrics to

quantify the diversity of the transformed program.  Based on these metrics, we demonstrated how

to choose the optimum value of k for creating data diversity.  For example, we have observed that

–2 is the optimum value for k in six out of seven benchmark programs we have simulated.

The execution profiles of those six programs show that adders are the most frequently

used functional units in the programs; thus, the transformation with k = -2 might be the most

desirable choice for the programs that use adders extensively.  However, program profiling and

fault injection simulations in functional units are necessary to get the exact optimum value for k

because data integrity and fault detection probability depends on the implementation of functional

units.

If a hardware design is fixed (such as in COTS) and cannot be modified, we can use ED4I

to improve the data integrity of the system.  Transforming the original program of the system,

running the original and transformed program, and subsequently comparing outputs can improve

the data integrity and availability of the system.
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Appendix I: Program Transformation Algorithm

An expression expr(x1, x2,…,xn) represents arithmetic or logical operations on variables x1,

x2,…,xn.  An assignment statement y := expr(x1, x2,…,xn) defines y by assigning y the result of

expr(x1, x2,…,xn).  A branch statement if expr(x1, x2,…,xn) determines the control flow according

to the result of  expr(x1, x2,…,xn).  A basic block is a sequence of consecutive statements in which

flow of control enters at the beginning and leaves at the end without branching except at the end.

By defining V = {v1, v2,…,vn} as the set of vertices denoting basic blocks, and E = {(i,j) |

(i, j) is a branch from vi to vj} as the set of edges denoting possible flow of control between the

basic blocks, a program can be represented by a program graph, PG = {V, E}.

The program transformation consists of two parts: expression transformations in basic

blocks and branching condition transformations in branch statements.  The expression

transformation converts all the variables and constants in P' to k-multiples of corresponding

variables and constants in P.  Since the values of the variables and constants are different in P and

P′, the branching condition transformation modifies the expression in the branch statement and

keeps the control flow in P' as same as the one in P.

Expression Transformation

Let x′1, x′2,…, x′n  be the variables in the transformed program P′ and correspond to the variables

x1, x2,…, xn in P; then, k⋅xi = x′i, i = 1,2,…,n should be always true during run time.  Furthermore,

any expression expr′(x′1, x′2,…, x′n) in P′ corresponding to expr(x1, x2,…, xn) in P also should

satisfy  k⋅expr(x1, x2,…, xn) =  expr′(x′1, x′2,…, x′n), which is achieved by the expression

transformation to be described in this section.

An expression expr(x1, x2,…, xn) can be recursively represented by a parse tree, a tree in

which the leaves are the variables x1, x2,…, xn or constants.  An interior node in the parse tree has

three children: the child on the left and right is either a node or a leaf, and the child in the middle

denotes an arithmetic operation.  An example is shown in Fig. I.1.
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 expression transformation

z = x + i * y

 x + i * y

 i * y

z = x + i * y

 x + i * y / k

 i * y

 i * y / k

 (a)  (b)

Fig. I.1  An example of a parse tree of z = x + i * y (a) before transformation (b) after
transformation.

A parse tree T is built from an expression expr(x1, x2,..., xn) in P.  Suppose T’ represents a parse

tree for a corresponding new expression expr’(x’1, x’2,...x’n) in P’; then, the values represented by

the internal nodes in T’ should be k-multiple of the values in the corresponding nodes in T.

An algorithm recursively transforming expr(x1, x2,...,xn) to expr′(x′1, x′2,…, x′n) follows:

1 transform (t) {
2 if (leaf)
3 if (constant) return x’ = k * x;
4 else return x’
5 else {
6 left_child(t’) := transform (left_child(t));
7 right_child(t’) := transform (right_child(t));
8 middle_child(t’) := middle_child(t);
9 if (middle_child(t) = * (or /)) {
10 right_child(t’’) := k;
11 left_child(t’’) = t’;
12 middle_child(t’’) = / (or *);
13 return t’’;
14 } else {
15 return t’;
16 }
17 }
18 }

Theorem I.1.. The internal nodes in T′ = transform(T)are always k-multiple of the

corresponding nodes in T.

Proof. By induction.
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Base case of the induction: All the leaves in T′ are k-multiple of the leaves of T by line 2,3 and 4

of the algorithm.

Induction step:  Let us represent n as the result of the operation with left and right child of one

internal node of T, and n′ as the result of the corresponding node of T′.  Assume that left and right

child of the internal node in T′ are k-multiple of the left and right child of the corresponding node

in T.  If the operation is an addition, n′ is still k-multiple of n, i.e., k⋅n = n′.  If the operation is

multiplication, n′ is n′ =  k⋅left_leftchild ⋅ k⋅ right_child = k⋅k⋅n.  Line 9 to 12 eliminates this extra

k and keeps n′ = k⋅n.  Similarly, it is also true that n′ = k⋅n in division.  Therefore,

transform(t) always returns t′ such that the value of the top node of t′ is always k-multiple of

the top node of t.

Branching Condition Transformation

The branch statement compares two values (or expressions) and determines the control flow

based on the comparison result.   The expression in the branch statement has binary values: true

or false.  For example, if the expression in the branch statement is true, the branch is taken.  If it

is false, the branch is not taken.  The branch statement can be represented by a decision triangle

as shown in Fig. I.2.  If expr(x1, x2,...,xn) is true, the branch is taken, and otherwise, the next

statement is executed.  This control flow should be preserved in expr′(x′1, x′2,…, x′n) in P′, i.e.,

when k⋅xi = x′i, expr′(x′1, x′2,…, x′n)   always takes the same value (true or false) as expr(x1,

x2,...,xn) in P so that the control flow in P' always identical to the one in the original program.

An algorithm for branching condition transformation is:

1. expr(x1, x2,...,xn) in a branch statement is transformed to expr′(x′1, x′2,…, x′n) by

expression transformation

2. If expr(x1, x2,...,xn) contains ≥, >, ≤, or <

3. if k < 0, then ≥, >, ≤, or < is converted to ≤, <, ≥, or > respectively.

Theorem I.2.  The branching condition transformation makes the two control flows determined

by expr(x1, x2,...,xn) and expr′(x′1, x′2,…, x′n) always identical.

Proof.  Inequality relationship such as x1 < x2 is preserved when both sides are multiplied by

positive k. If multiplied by negative k, the inequality is reversed as in x1 > x2 by line 2 and 3.
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Therefore, if k⋅xi = x′i, expr(x1, x2,...,xn) and expr′(x′1, x′2,…, x′n) have the same true or false value,

and the control flows determined by expr(x1, x2,...,xn) and expr′(x′1, x′2,…, x′n) are the same.

 expr(x1, x2,...,xn) = True

expr
 expr(x1, x2,...,xn) = False

 expr(x′1, x′2,...,x′n) =  True

 x1, x2,...,xn

expr
 expr(x′1, x′2,...,x′n) = False

x′1, x′2,...,x′n

P P′

Fig.I.2. Branch determined by the expression in a branch statement.

 expr(x={7,9}) = False
x <5

 expr(x={1,3}) = True

 expr(x′ ={-14,-18}) =  False

 x={1,3,7,9}

x>-10

 expr(x′ ={-2,-6}) = True

x′ = {-2,-6,-14,-18}

Fig.I.3. Branching in the original and transformed expressions when k=-2

Figure I.3 illustrates an example control flow when k⋅xi = x′i, and k = -2.  The branch statement

expression expr(x)={x < 5} in (a) is transformed to expr′(x′)={x′ > -10} in (b).  When x = {7, 9},

the branches are taken.  When x′ = {-14, -18} that is k-multiple of x = {7, 9}, k = -2, the branches

are also taken in the transformed branch statement.  Similarly, the branches are not taken both in

x = {1, 3} and x′ = {-2, -6}, and the two control flows by the original and transformed

expressions are identical.
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 Program Transformation

If k⋅S(n)= S′(n) after n vertices are executed, Theorem I.1 tells us that k⋅S(n+1) = S′(n+1) after

one more vertex is executed. Also consider a branch statement s in P and the corresponding

branch statement s’ in P’.  If k⋅S(n) = S′(n), the control flows determined by s and s’ are identical

by Theorem I.2.

(I.1) If k⋅S(n) = S′(n), then k⋅S(n+1) = S′(n+1)

(I.2) For ∀vi ∈ V that have a branch statement si at the end and are executed after m-1 vertices

 are executed:

if k⋅S(m) = S′(m) and, si and s′i are executed, then branching

determined by s′ is always identical to branching by s.

Let us denote the first basic block in P and P′by v0 and v′0, and assume that S(0) = S′(0) when the

program starts.  This constitutes the base case of the induction, and the inductive step (I.1) and

(I.2) inductively proves that the control flows in P and P′ are always identical.  This proof leads

us to Theorem I.3, which shows us that during run time, the variables in the transformed program

are always kept as k-multiple of the corresponding variables of the original program.

Theorem I.3.  For n>0, it is always true that k⋅S(n) = S′(n).

Appendix II

This section discusses how to get a closed form solution for an optimal value of k that maximizes

fault detection probability under the condition that data integrity is maximized.  We discuss two

functional units as examples: a bus and an adder.  Sec. II.1 considers a bus signal line that

consists of multiple parallel signal lines.  Sec. II.2 considers a ripple carry adder as an example of

iterative logic array.

II.1 Bus Signal Line

An M bit bus consists of M parallel signal paths.  As in Fig. 5.1, the source places an M bit signal

x on the M bit bus and transfers information to the destination.  If the ith bit of the bus has a stuck

fault, the destination may receive a corrupted value of x.
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We can detect this fault by placing x of the original program and x′ (= kx) of the

transformed program on the bus one after the other and comparing the received values

[Shedletsky 78].  If the fault corrupts either x and x′ in different way at the destination after x and

x′  are received , x′ = k⋅x will not be satisfied.  If x or x′ does not provoke the fault, the destination

receives the correct values and x′ = k⋅x is satisfied, i.e., the fault does not corrupt the information.

1) k = -1

In 2’s complement representation, negating a number is equivalent to reversing all the bits until

the first 1 as shown in Fig. II.1 (a).  Suppose that bi is the first 1 in x.  When x and x’ (= kx = -x)

are applied on the bus, all the bits from bi+1 to bM-1 in x′ are complements of the values of bi+1 to

bM-1 in x.  Because each bit from bi+1 to bM-1 can have the value of 0 and 1 by x and x′, any stuck

fault in those signal lines are provoked, and the fault can be detected by comparing two values.

Theorem II.1. Assuming that input x is randomly chosen with equal probability, if a stuck-at

fault exists on the bit bi of the bus, the data integrity of x and x′ for the bus is 1 when k = -1 and

 Pr{k⋅x ≠ x′} = 
12

1
1 +−

i
 .

Proof. Figure II.1 (b) helps us to calculate Pr{kx ≠ x′} when a stuck fault is present on the ith bit

of the bus.  Assume we have an Mbit bus.  Since the MSB bit is a sign bit, 2M-1 positive numbers

can be represented.  If x is positive, x′ is always negative.  If x is negative, x′ is always positive.

Thus, we need to consider only positive x to calculate Pr{kx ≠ x′}.  These numbers are grouped

according to the position of the first 1 from b0 as shown in Fig. II.1 (b).  In Fig. II.1, x represents

the bit whose value is complemented when the number is negated.  First, suppose bi is stuck-at 0

(We also denote stuck-at 0 as s/0).  The numbers from the first row to the i+1th row can provoke

the fault because either x or x′ is always 1 as shown in Fig. II.1 (b).  Therefore, by adding the

numbers shown in the entries from the first row to the i+1th row of the last column in Fig.II.1, we

can calculate Pr{kx ≠ x′} as:

( )
1

232
1 2

1
12...22

2

1
}at  s/0|Pr{ +

−−−−
− −=+++=′≠⋅

i
iMMM

M
xxk ib .

Second, suppose the ith bit is s/1; then, the numbers except for the i+1th row can provoke the

fault.

( )
1

21
1 2

1
122

2

1
}at  s/1|Pr{ +

−−−
− −=−=′≠⋅

i
iMM

M
xxk ib .
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Therefore,

12

1
1}}at  s/1|Pr{}at  s/0|{Pr{

2

1
}Pr{ +−=′≠⋅+′≠⋅=′≠⋅

i
xxkxxkxxk ii bb .

Fig.II.1 Negating numbers complements the bits until the first 1 from LSB b0

2) k = 2

Multiplying by 2 is equivalent to shifting one bit to the left (assuming the most significant bit

MSB is on the left).  Suppose we have an M bit bus and the bit i has stuck-at-0 fault.  If a variable

x is one of the variables in the original program and x′ is a corresponding variable in the diverse

program, x′ is one bit left shifted x.  When x is applied to this bus, the ith bit of x is corrupted if it

is 1, and the corrupted value is x – 2i.  If x′ is applied to the bus and the ith bit is corrupted, it

could be seen as the same case as the i-1th bit of x is corrupted and left shifted; so, the corrupted

value is x′ = 2(x – 2i-1) = 2x – 2i = kx – 2i ≠ kx.  Hence, if at least one of x and x′ is corrupted, k⋅x

= x′ is not satisfied, so the comparison of two values will detect the fault. If neither of them is

corrupted – both the (i-1)th and ith bit of x are zero – the fault (stuck-at-0) does not affect the

output, and k⋅x = x′ is satisfied.

Theorem II.2.  Assume that input x is randomly chosen with uniform probability and no

overflow in the bus.  If  k = 2 and a stuck-at fault exists in a bus, we can detect the fault with the

probability of 0.75 and the data integrity for the bus is 1.

Proof.  Suppose the ith bit of an M bit bus is stuck-at-0.  Consider the i-1 and ith bit of x that is

applied to this bus.  The s/0 fault is provoked if the ith bit of x is 1.  The i-1th bit of x is

equivalent to the ith bit of x′ if x is shifted by one bit left; thus, if the i-1th bit of x is 1, the s/0

 1
 2
 3
 …
 i
 i+1
 …
 M-1

 bM-1  …    bi    …  b0 # of numbers

 0 x x x x …x x x 1 2M-2

 0 x x x x …x x 1 0 2M-3

 0 x x x x …x 1 0 0 2M-4

…..   …..
 0 x x x x  x 1 0…0 2M-i-1

 0 x x x …1 0 …. 0 2M-i-2

…..   …..
 0 1 0 0 0 …     0 0 20

row              first 1

 000101010100
  x                  -1

 111010101100

 (a)  (b)
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fault is provoked.  Four combinations are possible for the two bits: 00, 01, 10, and 11 as shown in

Figure II.2.  Three of them have at least one 1 and they can provoke the fault so that k⋅x = x′ is

not satisfied.  Similarly, s/1 fault is also provoked by the three of four possible combinations;

therefore, if a stuck fault is present on the bus, Pr{k⋅x ≠ x′} = 0.75, and with this probability, we

can detect the fault by mismatch.

If the fault is not provoked, it does not change x or x′; thus, k⋅x = x′ is satisfied.

Therefore, the data integrity of x and x′ for the bus is:

1 – Pr{ k⋅x = x′, and both of x and x′ are corrupted in the same way} = 1 – 0 = 1

Fig.II.2 A bus signal lines applied by x

3) k = -2

Multiplying -2 is equivalent to negating a number and shift one bit to the left.  Suppose bj is the

first 1 in x.  All the bits from bj+1 to bM-1 in x are complemented and left shifted by one bit when x

is multiplied by -2..  Each bit from bj+1 to bM-1 has the same probability of 0.5 for 0 and 1, and the

probability remains the same although the bit is complemented.  If bi, j < i ≤ M-1, is s/0 in the

bus, 01, 10, and 11 in bibi-1 will provoke the fault, and the probability of detecting the fault is

0.75.  Similarly, the s/1 in bi is provoked with the probability of 0.75.

Theorem II.3.  Assuming that input x is randomly chosen with equal probability, if a stuck-at

fault exists in bi, the data integrity for the bus is 1 when k = -2 and

M
xxk

2

1

4

3
}Pr{ −=′≠⋅

 i  i-1

 x  0  0  x
 x  0  1  x
 x  1  0  x
 x  1  1  x

Bus signal lines

Possible 4 combinations of x
with equal probability



46

Proof. Suppose bi is s/0 as shown in Fig. II.1.  The numbers from the first row to the i-1th row

can provoke the fault with the probability of 0.75 since the values of the bits denoted by x are

complemented and shifted when multiplied by –2. The number of those numbers is

( )iMMM −−− +++ 2...22 32 .  The numbers represented by the ith and i+1th rows can provoke the

fault with probability 1 since bi-1 and bi are always 1, respectively.  The number of those numbers

is 21 22 −−−− + iMiM .  Therefore, we can calculate Pr{kx ≠ x′ | s/0 at bi } as:

    

( )

( )

.
4

3
                               

2
4

3

2

1

2

1
12122

4

3

2

1
                               

222...22
4

3

2

1
}at  s/0|Pr{

1
1

11
1

2132
1

=







=














 ++−=







 +++++=′≠⋅

−
−

−−−−
−

−−−−−−−
−

M
M

iMiiM
M

iMiMiMMM
M

xxk ib

Now, suppose bi is s/1.  The numbers from the first row to the i-1th row can provoke the fault

with the probability of 0.75.  The number of those numbers is iMMM −−− +++ 2...22 32 . A half of

the numbers in the ith row can provoke the fault because bi-1 is always 1 and bi can be either 0 or

1 with equal probability.  The number of these numbers is 2M-i-1.  The i+1th row to the last row

can always provoke the fault because bi-1 or bi is always 0.  The number of these numbers is

02 2...2 ++−−iM .  Thus, we can calculate Pr{k⋅x ≠ x′ | s/1 at bi} as:

( ) ( )

( )

.
2

1

4

3
                                   

12
4

3

2

1
1

2

3
2122

4

3

2

1
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2

1
22...22

4

3

2

1
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1
1

11
1

02132
1
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−=







 −=







 −+−=







 +++⋅++++=′≠⋅

M

M
M

iMiiM
M

iMiMiMMM
M
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Therefore, if M is large enough, the probability approximates to:

4

3

2

1

4

3
}

2

1

4

3

4

3
{

2

1
                   

}}at  s/1|Pr{}at  s/0|{Pr{
2

1
}Pr{

1
≈−=−+=

′≠⋅+′≠⋅=′≠⋅

− MM

xxkxxkxxk ii bb

II.2. Cell Array- Ripple Carry Adder

Let us denote signal names by bold letters and corresponding transition probabilities by italic

letters.  Table 14 summarizes several lemmas presented in [Parker 75a], which relates Boolean

operations to corresponding operations on probabilities.  Their proofs can be found in [Parker

75b].
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Table 14. Summary of probabilistic model lemmas

Function Probability Assumption

a a --

a′ 1 – a --

ab ab a, b independent

x1x2 … xn x1x2 … xn All xi independent

a ∨ b a + b – ab a, b independent

x1 ∨ x2 ∨ … ∨ xn )1(1
1

∏
=

−−
n

i
ix All x i independent

a ∨ b a + b a,b not simultaneously 1

U
n

i 1=
ix ∑

=1i
ix xi⋅xj = 0  ∀ i ≠ j

In this section, we will show how to get a closed form solution of the fault detection

probability when we use k = 2 for a ripple carry adder.

Let us consider Fig.II.3 that shows one cell Ci (a full adder) of a ripple carry adder.  In

Fig.II.3, ai, bi, ci and ci+1 denote the probability that ai, bi, ci and ci+1 become 1.  We can derive ci+1

from ai, bi and ci using lemmas in Table 14:

222222

1

      

)1)(1)(1(1

iiiiiiiiiiiiiiiiii

iiiiiii

cbacbacbacbabcacba

bcacbac

+−−−++=

−−−−=+

By using Lemma5 in [Parker 75b], we can suppress the exponents in the expression. Therefore,

iiiiiiii

iiiiiiiiiiiii

cbabacba

cbacbabcacbac

2 )(      

31

−++=
+−++=+

Assuming ai = bi = 0.5, we can solve the equation and obtain a closed form for ci :

0  ,1,
2

1

2

1
2

1

4

1

01

1

=≥−=

+=

+

+

cic

cc

ii

ii
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 si

 ci+1

 ai

 bi

 ci

  &

  &

  &

  +

 xor
 xor

Fig.II.3  One cell Ci of a full adder

Fig.II.4. A carry chain in the cell Ci-1 and Ci

Figure II.4 shows a carry chain in the cell Ci-1 and Ci.  First, suppose k = 2, and let us consider s/0

at node ni,1.  To detect the fault, the path from ni,1 to ni,4 should be sensitized, and 1 should be

applied to ni,1 to provoke the fault s/0; then, ci+1 will have an incorrect value, which changes si+1

in the next cell Ci+1.  This will corrupt the computation result and result in k⋅x ≠ x′.  On the other

hand, when x′ (= 2x) is applied to the adder and provokes the fault s/0 at ni,1, we can analogously

think that x is applied and provokes the fault s/0 at ni-1,1, the node in the previous cell.  Therefore,

(II.1)
}at  s/0detect  & at  s/0detect Pr{                                        

}at  s/0detect Pr{} at  s/0detect Pr{} at  s/0|Pr{

i,11,1i

i,11,1ii,1

nn

nnn

−

−

−
+=′≠⋅ xxk

However, setting ni-1,1 to 1, provoking the fault at ni,1, and sensitizing ni,1 to ni,4 at the same time is

impossible.

 ci+1 ni-1,4

 ni,4

 ni,3

 ni,2

 ni,1

 ni-1,3

 ni-1,2

 ni-1,1

 ci

 ai-1

 bi-1

 ci-1

  &

  &

  &

  +

 ai

 bi

  &

  &

  &

  +



49

 (II.2)  

0.  } )1&1(& )0&0( & 1 Pr{                  

} 1    provoke &   topath  sensitize & at  s/0detect Pr{                  

}at  s/0detect  & at  s/0detect Pr{

=======
== −−

−

iiiii,4

i,1i,41,1i1,1i

i,11,1i

baban

nnnn

nn

Also assuming ai = bi = 0.5,

(II.3)

)1(
4

1
                                 

)1)(1(                                 

}1Pr{}to sensitizePr{}at  s/0detect Pr{

1

111111

−
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=⋅=
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bacbca
1,1i1,4i1,1i1,1i nn  nn

(II.4) )1(
4

1
}at  s/0detect Pr{ ic−=i,1n .

Applying the results of (II.2), (II.3) and (II.4) to (II.1), we can obtain

(II.5) )2(
4

1
}at  s/0|Pr{ 1 ii ccxxk −−=′≠⋅ −i,1n .

Now, let us consider s/1 at ni,1.  We can use the same method as in equ. (II.1).

(II.6)
}at  s/1detect  & at  s/1detect Pr{                                        

}at  s/1detect Pr{}at s/1detect Pr{}at  s/1|Pr{
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−
+=′≠⋅ xxk

Unlike the case of s/0, Pr{detect s/1 at ni-1,1 & detect s/1 at ni,1} is not zero.

(II.7)
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)}0or  0(& 0 Pr{               
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Finally, applying the results of (II.7), (II.8) and (II.9) to (II.6), we can obtain,

(II.10) ii ccxxk
4

1

2

1

4

3
}at  s/1|Pr{ 1 +−=′≠⋅ −i,1n .

Similarly, we can calculate the probabilities for other nodes.
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(II.11) 116
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The output of XOR gate keeps the probability of 0.5 for becoming 1 as long as one of the inputs

has the probability of 0.5 for 1.  In Fig.II.5, one input has probability 0.5 for 1 and the other has p

for 1, and as shown in the figure, the probability that output is 1 is still 0.5.

Fig.II.5. The output transition probability of XOR gate

We know that signal lines (input and output lines) have Pr{k⋅x ≠ x′} = 0.75 from the previous

section, and this probability does not change when it propagates through XOR gates;

thus, Pr{k⋅x ≠ x′} = 0.75 for all the input and output nodes (ai, bi, and si) of the XOR gate.

Table 15 illustrates Pr{k⋅x ≠ x′} in each node in selected cells of a 32-bit adder when the node has

stuck fault.  The last row averages the probabilities of eight nodes in one particular cell.

Table 15. Pr{k⋅x ≠ x′} in each node in selected cells of the adder when k = 2.

C0 C1 C3 C7 C15 C31

s/0 s/1 s/0 s/1 s/0 s/1 s/0 s/1 s/0 s/1 s/0 s/1

input & si 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750

ni,1 0.250 1.000 0.438 0.813 0.297 0.672 0.253 0.628 0.250 0.625 0.250 0.625

ni,2, ni,3 0.000 1.000 0.063 0.813 0.180 0.672 0.216 0.628 0.219 0.625 0.219 0.625

ni,4 0.250 1.000 0.438 0.813 0.578 0.672 0.622 0.628 0.625 0.625 0.625 0.625

total 0.438 0.875 0.500 0.782 0.529 0.711 0.538 0.689 0.539 0.688 0.539 0.688

 c

 b

 a  xor

 = 0.5 p + 0.5 (1- p) = 0.5

 Pr{c=1} = Pr{a=1&b=0}+Pr{ a=0&b=1}


